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It is proposed the modification of the Jacobi polynomial expansion method (MJEM) which is based on the
application of the truncated moments instead of the full ones. This allows to reconstruct with a high precision
the local quark helicity distributions even for the narrow accessible for measurement Bjorken x region using as
an input only four first moments extracted from the data in next to leading order QCD. It is also proposed the
variational (extrapolation) procedure allowing to reconstruct the distributions outside the accessible Bjorken
z region using the distributions obtained with MJEM in the accessible region. The numerical calculations
encourage one that the proposed variational (extrapolation) procedure could be applied to estimate the full

first (especially important) quark moments.

PACS: 13.60.Hb, 13.85.Ni, 13.88.+¢

The extraction of the quark helicity distributions is
one of the main tasks of the semi-inclusive deep inelastic
scattering (SIDIS) experiments (HERMES [1], COM-
PASS [2]) with the polarized beam and target. At the
same time it was argued [3] that to obtain the reliable
distributions at relatively low average @? available to
the modern SIDIS experiments?), the leading order (LO)
analysis is not sufficient and next to leading order (NLO)
analysis is necessary. In ref. [4] the procedure allowing
the direct extraction from the SIDIS data of the first mo-
ments of the quark helicity distributions in NLO QCD
was proposed. However, in spite of the special impor-
tance of the first moments, it is certainly very desirable
to have the procedure of reconstruction in NLO QCD
of the polarized densities themselves. However, it is
extremely difficult to extract the local in zp distribu-
tions directly, because of the double convolution product
entering the NLO QCD expressions for semi-inclusive
asymmetries (see [4] and references therein). On the
other hand, operating just as in ref. [4], one can di-
rectly extract not only the first moments, but the Mellin
moments of any required order. The simple extension
of the procedure proposed in ref. [4] gives for the n-th
moments A,q = fol dz " 1q(zx) of the valence distrib-
utions the equations
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2)For example, HERMES data [1] on semi-inclusive asymme-
tries is obtained at ngerage =2.5GeV?2.
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where all quantities in the right-hand side are the same
as in ref. [4] (see Eqgs. (18)—(23)) with the replacement

of
1 1
/d:l: by /dwm"‘l.
0 0

It should be noticed that in reality one can mea-
sure the asymmetries only in the restricted xp region
0 <a <z <b<1, so that the approximate equations
for the truncated moments

b
A;LqE/ dz z"q(2) (2)

of the valence distributions have a form (1) with the
replacement of the full integrals by the sums over bins
covering accessible zp region a < z < b, so that
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and analogously for .Al(i").

Thus, one can directly extract from the data the n-th
Mellin moments of valence distributions. The question
arises: is it sufficient to reconstruct the local in zp dis-
tributions?

There exist several methods allowing to reconstruct
the local in z quantities (like structure functions, polar-
ized and unpolarized quark distributions, etc) knowing
their n-th Mellin moments. All of them use the expan-
sion of the local quantity in the series over the orthogo-
nal polynomials (Bernstein, Legendre, Jacobi, etc). The
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most successful in applications (reconstruction of the lo-
cal distributions from the evolved with GLAP moments
and investigation of Aqcp) occurred the Jacobi poly-
nomial expansion method (JEM) proposed in the pio-
neer work by Parisi and Sourlas [5] and elaborated® in
refs. [6, 7]. Within JEM the local in 2 g functions (struc-
ture functions or quark distributions) are expanded in
the double series over the Jacobi polynomials and Mellin
moments — see Eq. (A.1) in the Appendix. For what fol-
lows it is of importance that the moments entering Eq.
(A.1) are the full moments, i.e., the integrals over the en-
tire g region 0 < z < 1: M[j] = fol dez? ' F(z). Until
now nobody investigated the question of applicability
of JEM to the rather narrow zp region available to the
modern polarized SIDIS experiments. So, let us try to
apply JEM to the reconstruction of Auy (z) and Ady (z)
in the narrow zp region® a = 0.023 < z < b = 0.6 avail-
able to HERMES, and to investigate is it possible to
safely replace the full moments by the truncated ones.
To this end we perform the simple test. We choose®)
GRSV2000NLO (symmetric sea) parametrization [9] at
Q? = 2.5 GeV?. Integrating the parametrization over the
HERMES zp region we then calculate twelve truncated
moments of the v and d valence distributions given by
Eq. (2) with a = 0.023,b = 0.6. Substituting these mo-
ments in the expansion (A.1) with Ny, = 12, we look
for optimal values of parameters a and 3 correspond-
ing to the minimal deviation of reconstructed curves for
Auy(z) and Ady(z) from the input (reference) curves
corresponding to input parametrization. To find these
optimal values aqpy and Bopt we use the program MI-
NUIT [10]. To control the quality of reconstruction we
introduce the parameter

b
= fa dm|Freconstructed (.’E) - Freference(m)|

5 -100%, (4)
| fa d$Freference|

where Freference(z) corresponds to the input parame-
trization and Freconstructed(Z) = Fn,_. () in Eq. (A.1)
from the Appendix. The comparison of reconstructed
and input (reference) curves shows that even for a such

high number of used moments Np,,x = 12 they strongly

3)JEM with respect to polarized quark densities was first ap-
plied in ref. [8].

“)We choose here the most narrow HERMES g region where
the difference between JEM and its modification MJEM (see be-
low) application becomes especially impressive. However, even
with the more wide zp region (for example, COMPASS [2] region
0.003 < = < 0.7) it is of importance to avoid the additional system-
atical errors caused by the replacement of the full (unaccessible)
moments in JEM (A.1) by the accessible truncated moments.

5) Certainly, one can choose for testing any other parametriza-
tion.

differ from each other: v| . ~= 6.24% for Auy and
1/|JEM = 5.52% for Ady. Thus, the substitution of
truncated moments instead of exact ones in the expan-
sion (A.1) is a rather crude approximation at least for
HERMES zp region. Fortunately it is possible to mod-
ify the standard JEM in a such way that new series
contains the truncated moments instead of the full ones.
The new expansion looks as (see the Appendix)
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where we introduce the notation (c.f. Eq. (2))

b .
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for the moments truncated to accessible for measure-
ment zp region. It is of great importance that now in
the expansion enter not the full (unavailable) but the
truncated (accessible) moments. Thus, having at our
disposal first few truncated moments extracted in NLO
QCD (see Egs. (1)), and using MJEM (Eq. (5)), one
can reconstruct the local distributions in the accessible
for measurement zp region.

Let us check how well MJEM works. To this end let
us repeat the simple exercises with reconstruction of the
known GRSV2000NLO (symmetric sea) parametriza-
tion and compare the results of Auy(z) and Ady(z)
reconstruction with the usual JEM and with the pro-
posed MJEM. To control the quality of reconstruction
we again use®) the parameter v given by Eq. (4), where
noW Freconstructed(Z) = Fn,..(2) in Eq. (5). We per-
form the reconstruction with both very high number of
used moments Npmax = 12 and small number Ny, = 4.
Notice that the last choice Npax = 4 is especially im-
portant because of peculiarities of the data on asymme-
tries provided by the SIDIS experiments. Indeed, the
number of used moments should be as small as pos-
sible because first, the relative error |§(M’[5])/M'[j]]
on M'[j] becomes higher with increase of j and sec-
ond, the high moments becomes very sensitive to the

6)Calcula‘cing v we just cut off the boundary distortions which
hold for MJEM in the small vicinities of the boundary points (see
the Appendix), and decrease the integration region, respectively.
To be more precise, one can apply after cutting some extrapola-
tion to the boundary points. However, the practice shows that the
results on v calculation are practically insensitive to the way of
extrapolation since the widthes of the boundary distortion regions
are very small (less than 1073).
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replacement of integration by the sum over the bins.
The results of Auy (z) and Ady () reconstruction with
MJEM for Np.x = 12 demonstrate that, on the con-
trary to the usual JEM, MJEM gives excellent agree-
ment between the reference and reconstructed curves:
Y ppymn = 0-06% for Auy(z) = 0.08%
for Ady (z).

In the case Nmax = 4 the difference in quality of
reconstruction between JEM and MJEM (see Fig.1)
becomes especially impressive”). While for standard

and v | MJEM
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Fig.1. Comparison of the quality of Auy(z) reconstruc-
tion with the usual JEM (top) and with MJEM (bottom).
Solid lines correspond to input (reference) parametriza-
tion. Dotted lines correspond to the distributions recon-
structed with JEM (top) and with MJEM (bottom)

JEM the reconstructed and reference curves strongly dif-
fer from each other, the respective curves for MJEM are
in a good agreement. Thus, one can conclude that deal-
ing with the truncated, available to measurement, zp
region one should apply instead of the usual JEM the
proposed modified JEM to obtain the reliable results on
the local distributions.

Until now we looked for the optimal values of para-
meters o and @ entering MJEM using explicit form of
the reference curve (input parametrization). Certainly,
in reality we have no any reference curve to be used for
optimization. However, one can extract from the data
in NLO QCD first few moments (see Egs. (1)). Thus,
we need some criterium of MJEM optimization which
would use for optimization of a and 3 only the known
(extracted) moments entering MJEM.

On the first sight it seems to be natural to find the
optimal values of a and # minimizing the difference

") For Ady we obtained even more impressive difference between
JEM and MJEM application with Nmax = 4: ”|JEM = 13.33%
while v| ;0 r = 1.2%.
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of reconstructed with MJEM (5) and input® (entering
MJEM expansion (5)) moments. However, it is easy to
prove®) that this difference is equal to zero identically:

N < Nmax, (7)

M[Iavb] ['I’L] = M[,a, ,b] [’I’l] ’

reconstructed input

i.e. all reconstructed moments with n < N, are iden-
tically equal to the respective input moments for any
a and (. Fortunately, we can use for comparison the
reference “twice-truncated” moments

b’
M"[n] = Mg o p_)In] = /+ ' dez" "' F(z)

(a<a+a <b-0b' <b), (8)

i.e. the integrals over the region less than the integration
region [a, b] for the “once-truncated” moments My, ;, en-
tering MJEM (5). The respective optimization criterium
can be written in the form
ZN’““ M
7=0

(reconstructed) [-7] -

! esenceyld]| = min.. (9)

(reference)

The “twice truncated” reference moments should be ex-
tracted in NLO QCD from the data in the same way as
the input (entering MJEM (5)) “once truncated” mo-
ments. In reality one can reconstruct from the data
“twice-truncated” moments using Eq. (1) and remov-
ing, for example, first and/or last bin from the sum in
Eq. (3).

Let us now check how well the optimization criterium
(9) works. To this end we again perform the simple nu-
merical test. We choose GRSV2000NLO parametriza-
tion at Q% = 2.5 GeV? with both broken and symmet-
ric sea scenarios. We then calculate four first “once-
truncated” and four first “twice-truncated” moments de-
fined by Egs. (6) and (8), and substitute them in the op-
timization criterium (9). To find the optimal values of a
and 3 we use the MINUIT [10] program. The results are
presented'®) by Fig.2. It is seen that the optimization
criterium works well for both symmetric and broken sea
scenarios. The deviations of the reconstructed curves
from the reference curves (input parametrization) near
the boundary points are unavoidable since MJEM is cor-
rectly defined in the entire region (a,b) except for the
small vicinities of boundary points (see the Appendix).

8)In practice one should reconstruct these input moments from
the data using Egs. (1). The reference “twice-truncated” moments
(8) should be reconstructed from the data in the same way.

91t can be proved by analogy with the case of the usual JEM,
where Eq. (7) with [a, b] = [0,1] holds (see, for example, [7]).

10)For Ady we also get very good agreement between input and
reconstructed curves: v = 0.3% and v = 0.07% for symmetric and
broken sea scenarios, respectively.
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Fig.2. The results of Awuy reconstruction for

GRSV2000NLO parametrization for both symmetric
(top) and broken sea (bottom) scenarios. Solid line cor-
responds to the reference curve (input parametrization).
Dotted line is reconstructed with MJEM and criterium (9)
inside the accessible for measurement region ([0.023,0.6]
here). Optimal values of a and 3 are aops = —0.15555,
Bopt = —0.097951 and aopt = —0.209346, Bopy = 0.153417
for symmetric and broken sea scenarios, respectively

Fortunately, these distortions occur in very small vicini-
ties of the boundary points, and the curves are in very
good agreement in the practically entire accessible zp
region. Notice that for the procedure of extrapolation
outside the accessible zp region one just should cut off
these unphysical boundary distortions (see below).
Thus, one can conclude that MJEM can be success-
fully applied for reconstruction of the local distributions
knowing only first few truncated Mellin moments. No-
tice, however, that by construction MJEM reproduces
the local distributions only in the accessible for mea-
surement zp region. The question arises: could one at-
tempt to reconstruct the local distributions outside the
accessible region (i.e. to perform extrapolation) using
the obtained with MJEM distributions as an input? To
this end we propose to solve the following variational
task. We apply MJEM, Eq. (5), to the maximally')
extended zp region [@min,bmax| replacing the moments
M, . bougli] BY M, (5] + €;, where €;(j =1...4) are
the free variational parameters (e; should be considered
as unknown “tails” of the full moments). Then, using
MINUIT program [10], one finds parameters €; requir-
ing the minimal deviation of the reconstructed with e;
curve from the input (reconstructed with criterium (9))
curve inside the accessible for measurement region [a, b].

11)For a moment, we restrict ourselves by the zp region [amin =
104, bmax = 1] which is typical for the most known parametriza-
tions on the quark helicity distributions.

The reconstructed in this way quantities M[’a,b] 7] + €5

should be compared with the reference (obtained by di-

rect integration of the input parametrization) moments

bunas] [_7]‘ . In ideal case (ideal reconstruc-
reference

tion of “tails” €;) these quantities would coincide.

Let us test this variational (extrapolation) proce-
dure by the simple numerical exercise. We choose
GRSV2000NLO parametrization (for both broken and
symmetric sea scenarios) at Q2 = 2.5 GeV? as the ref-
erence one. Since the allowed [9] zp region for this
parametrization is [107%,1] we choose [@min,bmax)
[107%,1], and for the truncated region [a,b] we again
choose the accessible for HERMES zp region [a,b] =
[0.023,0.6]. Notice that performing the variational (ex-
trapolation) procedure we cut off the boundary distor-
tions of the curve (which enters the variational proce-
dure as an input) obtained with MJEM and criterium
(9) inside the accessible zp region.

[@amin,

Results of first four moments of Auy reconstruction in
the region [amin = 10~ %, bnax = 1] for the
GRSV2000NLO parametrization for both symmetric
(top) and broken sea (bottom) scenarios

n | Moo | Mpastt | Msterence
1 0.749 0.904 0.917
2 0.153 0.164 0.167
3 0.047 0.053 0.055
4 0.017 0.021 0.023
1 0.570 0.609 0.605
2 0.137 0.150 0.149
3 0.044 0.052 0.052
4 0.017 0.023 0.022

The results of the variational (extrapolation) proce-
dure application are presented by Fig.3 and Table. Com-
paring the reconstructed curve with the input parame-
trization for Auy(z) (see Fig.3) one can see that they
are in a good agreement. First four reconstructed mo-
ments are also in a good agreement with the respective
reference (obtained by direct integration of the input
parametrization) moments — see Table. For Ady the
quality of reconstruction is also very good for symmet-
ric sea scenario and a little bit worse'® in the case of
broken sea scenario. In any case, the reconstructed first
moments (the most important for understanding of the
proton spin structure) are in a good agreement with the

12)The point is that in the case of broken sea scenario the mo-
ments of Ady are very small quantities and, besides, Ady (z)
changes the sign at small zg [9]. Thus, the application of pro-
posed variational (extrapolation) procedure in this case becomes
more complicated.
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Fig.3. The results of Auy reconstruction in the region
[@min = 107%, bmax = 1] for GRSV2000NLO parametriza-
tion for both symmetric (up) and broken sea (down) sce-
narios. Solid line corresponds to the reference curve (input
parametrization). Dotted line corresponds to the curve
reconstructed in the entire [@min = 107 %, bmax = 1] re-
gion with the requirement of minimal deviation from the
curve (bold solid line ) reconstructed with MJEM and cri-
terium (9) inside the accessible for measurement region
([0.023,0.6] here)

respective reference moments of both Auy and Ady dis-
tributions.

Thus, all numerical tests confirm that the pro-
posed modification of the Jacobi polynomial expansion
method, MJEM, allows to reconstruct with a high preci-
sion the quark helicity distributions in the accessible for
measurement zp region. We consider this as the main
result of the paper. Besides, the numerical calculations
encourage one that the proposed variational (extrapola-
tion) procedure based on MJEM could become the reli-
able extrapolation procedure. Certainly, here the careful
additional investigations are necessary.

First of all, we plan to apply the proposed method
to HERMES data on the pion production with both
proton and deutron targets. As it was shown above,
MJEM (rather than usual JEM) should be applied for
reconstruction of the local in 2 g distributions from NLO
QCD extracted moments in all modern semi-inclusive
DIS experiments (such as COMPASS experiment) with
the restricted accessible zp region, and it becomes ab-
solutely necessary for the rather narrow HERMES zp
region. To extract the valence quark helicity distribu-
tions in NLO QCD with the proposed method we will use
so-called “difference asymmetries” (on essential advan-
tages of these asymmetries see [4] and references therein)
which now are constructed by HERMES. At present,
the extended paper with the simulations corresponding
to HERMES kinematics is in preparation.
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Appendix. The JEM is the expansion of the z-

dependent function (structure function or quark density)
in the series over Jacobi polynomials olP) (z) orthog-
onal with weight w(®0)(z) = 20(1 — z)* (see [5-7] for
details):

F(z) ~ Fy__(z) = w(®P) Z Nomex @(a,ﬁ) (z)x
x Z c,w’ﬂ)M +1), (A.1)
where M[j] = fo dz z9~1F(z) and
1
/ dow(@P) ()08 ()0 (2) = Spm.  (A.2)
0
The details on the Jacobi polynomials
(@B) () = N @)
0, " (z) = Zj o Cki (A.3)

can be found in refs. [5] and [6]. Expansion (A.1) be-
comes exact when Npa., — 0o. However, in practice
one truncates the series (A.1) living in the expansion
only finite number of moments Npyax. The experience
shows [7] that JEM produces good results (for entire 25
region) even with the small number Npyax.

The idea of modified expansion is to reexpand F'(x)
in the series over the truncated moments M, [j] given
by Eq. (6), performing the rescaling ¢ — a + (b — a)z
which compress the entire region [0, 1] to the truncated
region [a,b]. To this end let us apply the following

ansatz!®)
B a
z—a z—a
F = 1-—
(2) (b—a) ( b—a) %

oo -~ a,B r—a
XD g IO (r)

and try to find the coefficients f,. Multiplying both
parts of Eq. (A.4) by @;f’ﬁ)((a:—a)/(b—a)), integrating

(A4)

13)Notice that ansatz (A.4) (as well as the expansion Eq. (5) it-
self) is correctly defined inside the entire region (a, b) except for the
small vicinities of boundary points (absolutely the same situation
holds for the usual JEM, Eq. (A.l), applied to the quark distri-
butions in the region (0,1)). In practice, the respective boundary
distortions are just cut off when one performs the extrapolation
procedure.
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over x in the limits [a, b] and performing the replacement
t = (z —a)/(b— a), one gets

b @ z—a
/a dz F(:c)@,(c #) (m) =
oo 1
=(b-a) }n/ dtt? (1 — )0 ()0 (1),
n=0 0

so that with the orthogonality condition Eq. (A.2) one
obtains

r—a

}‘nz(b—a)_l/abdwF(m)('A)Sf’ﬂ) (b ) (A.5)

—a
Substituting Eq. (A.5) in the expansion (A.4), and us-
ing Eq. (A.3) one eventually arrives at Eq. (5) (with
Nmax — 00) of the main text.
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