Home
For authors
Submission status

Current
Archive (English)
Archive
   Volumes 81-92
   Volumes 41-60
   Volumes 21-40
   Volumes 1-20
   Volumes 61-80
      Volume 80
      Volume 79
      Volume 78
      Volume 77
      Volume 76
      Volume 75
      Volume 74
      Volume 73
      Volume 72
      Volume 71
      Volume 70
      Volume 69
      Volume 68
      Volume 67
      Volume 66
      Volume 65
      Volume 64
      Volume 63
      Volume 62
      Volume 61
Search
VOLUME 61 (1995) | ISSUE 2 | PAGE 142
On deformations of some integrable equations
We show that deformations of integrable equations in 1 < d < 3 or, in other words, nonautonomous versions of well-known integrable equations can be obtained by reduction of the self-duality equations of the Yang-Mills model in d 4 under the action of symmetry groups. We describe new nonautonomous integrable equations (and their linear systems), which are the deformations of the equation of the principal chiral model in d *■ 3, the Korteweg-de Vries equation and the equations of the Hamilton!an systems with quartic potentials.