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It is demonstrated how the binary alloys with short-range oscillating atomic
interaction can grow large, nearly perfect quasicrystal grains. The calculated Bragg
peaks become narrower during the grain growth; nevertheless, they exhibit clear
evidence for phasonic deformations.

Even ten years after the discovery of quasicrystals [1] their atomic origin is
controversial. The modeling of quasicrystal structure and growth usually includes
either projection from high-dimensional spaces [2] (six-dimensional in the case of
icosahedral _quasicrystals) or special atomic clusters (the Ammann rhombohedra,
the canonmical cells (3], different units with icosahedral symmetry, etc.) which
are attached according some matching rules [4-6]. These two methods are very
powerful and mutually related ( see [5] where further references may be found).
However, among those clusters only the 13-atom icosahedron seems to be reasonable
from the atomistic point of view.

In this paper a growth algorithm is suggested which wuses neither high-
dimensional spaces nor ready-made clusters. Atoms are supposed to be spherical
(without directional bonds); only the interatomic distances are specifically chosen.
In the beginning, the growth model is postulated, then the physical and geomet-
rical reasons for the model are presented and the properties of the grown grains
are discussed.

The postulated feature of the model is the dodecahedral local ordering (DLO)
of atoms as the basic structure motif of quasicrystals. The ideal DLO means that
every atom has its closest neighbors positioned at the vertices of a regular pentagon-
dodecahedron. Experimentally, the DLO was found both in the approximants and
in the icosahedral quasicrystals of different composition (Al-Mn-Si [7], Al-Fe-Cu
[8], Al-Pd-Mn [9]). Within the six-dim projection scheme, the same local ordering.
arises if the size of the acceptance domain is enlarged in comparison with the
standard triacontahedron [10, 11]. The detailed discussion of the DLO in small and
large approximants (including a-Al-Mn-Si and R-Al;Li3Cu crystals) is presented
elsewhere [12].

A possible physical reason for DLO is the close packing of the atoms of two
different sizes, large (L) and small (S), with the special ratio of interatomic
distances:

f‘Ls/?LL =3/2. (1)

Just the same distances occur in the CsCl-type crystals and, approximately, in
the FeSi- and Hg-type crystals [12]. In Al-transition metal alloys, vy is a typical
Al-Al distance (of about 2.9 A) whereas 75 may be attributed to Al-transition
metal distances (of about 2.5 A, the minimal distance in the model). These
distances are simply related with the quasilattice constant, ar: ar =rrp/7+3/4,
etc., where 7 is the golden mean (7 = (1+ +/5)/2). The rss distance seems to
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be of minor importance because proper positions of small atoms can be fixed by
three or more LS-bonds.

If we stack I and S atoms in a pile so that every new atom is in contact
with at least three old atoms, a DLO-structure can result; thus the golden mean
7, frequently found inslde quasicrystalline structures, is really a consequence of
equation 1. Unfortunately, wrong positions can also arise in this stacking: for
instance, the regular tetrahedron of four L-atoms produces non-DLO positions. Such
and other disruptions can cause amorphisation of DLO-structures. Therefore, at
the moment it is not completely clear why the DLO occurs in the quasicrystalline
and related structures. A possible clue to the clearance is that in our growth
process every new atom is really fixed not by three old atoms but usually by 5-6
atoms; as a result, the non-DLO positions could be excluded. On the other hand,
in the Hg crystal, the DLO seems to be a result of the electronic properties (the
Jones effect) rather than of the different atomic sizes. Further work is needed here
and we believe that our paper should attract the researchers to this. Another
difficulty is that in real structures the DLO is usunally imperfect for many reasons
[12]. Nevertheless, in the present model of-quasicrystal growth the ideal DLO is
supposed.

The suggested growth algorithm includes the following steps:

i) The growth starts with a small initial DLO-cluster of atoms (3-50 atoms).

ii) New trial positions are generated at all the vertices of the regular dodeca-
hedron' around every atom.

i) Bad positions (see below) are excluded from the trial list.

iv) The trial position, which has the lowest energy, is stuck to the cluster; then
the growth process is repeated during reasonable computer time. In our simplified
model the negative energy of a trial position is supposed to be proportional to
the number of neighboring atoms (that is, to the number of atoms at the LS- and
LL-distances). If several positions have the lowest energy then the first position
of the trial list is stuck to the cluster; there were no attempts to randomize the
growth process.

This algorithm is similar to the Eden model of alloy quenching, previously used
for two-dimensional quasicrystals [I13]; therefore we discuss here only the most
important features of the simulations.

The computer growth shows that the i stage is crucial for the competition
between crystalline and quasicrystalline structures: if only those trial positions,
which are too close (closer than 7p5) to already existing atoms, are excluded then
the CsCl-type crystal grows. To suppress the crystalline structure we suppose that
some’ interatomic distances, intrinsic to that structure, are forbidden. The physical
reason is that the interatomic potential in metals is not of the Lenard-Jones form
(with one minimum); it may be an oscillating function of interatomic distances with
several minima and maxima (the Friedel oscillations). The interatomic potentials
of this type have been used in the studies of the quasicrystal stability [14].
The distances, corresponding to the maxima of the oscillations, are energetically
unfavorable; in our model some of them are totally forbidden (much larger
forbidden distances were also used for icosahedral clusters [6] but in the latter
case the physical reason is not clear). Of course, in more sophisticated theory a
realistic interatomic potential [14] should be used and the iii and iv stages should
be considered simultaneously.
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In the computer simulations we suppose that two distances, r}; and r}g, are
forbidden: r}; = V3rLr and r1s =1/ 11/3rs. Those distances are intrinsic both to
the CsCl and to the Hg structures (rj, is the distance between diagonal vertices
of the cubic unit cell of the CsCl structure, whereas rj g is the distance from a
vertex to the center of a neighboring cube). For reference, the forbidden distances
are just after the outer shell of the Mackay icosahedron; for those distances a gap
in the radial atomic distribution is observed in quasicrystalline structures. Our
experience shows that more complex selection rules can improve the quality of
growing clusters but our aim is only to demonstrate the idea.

Fig.1.The views along a threefold
axis on the quasicrystalline dodec-
ahedral cluster (more then 2 - 10°
atoms) grown from the outer shell of
the Mackay icosahedron (42 atoms);
the fivefold facets of the cluster are
rather evident

An example of the grain, grown with our algorithm, is shown in Fig.1. Different
initial clusters were examined: the piece of the FeSi-type crystal, the twelve-atom
empty icosahedron, the outer shell of the Mackay icosahedron (30+12 atoms), etc.
It seems that the coarse-grain structure and faceting of large grown clusters are
almost independent on the initial cluster. The fivefold facets are well pronounced,
therefore the clusters are distorted dodecahedra.

It is found that the average coordination numbers for different interatomic
distances, N(r), are similar to (and even larger than) those obtained for the
Al-Cu-Fe quasicrystals from the 6-dimensional approach [8]: N(rps) = N(rp.)=
6, N(ag) ~ 8 and N(rrpr) =~ 14. However, in comparison with the Mackay
icosahedron, where N(ar) = 12 and N(rryp) = 30, this coordination sphere is
approximately half-populated; hence large fragments of the outer shells of the
Mackay icosahedra can be found around many atoms.

The numbers of L- and S-atoms in the clusters are almost equivalent. and
the quasilattice is face-centered (L- and S-atoms correspond to two sublattices).
This results in 7-inflation for the fivefold reflection (Fig.2). However, if the
scattering amplitudes of L- and S-atoms are the same or if the L-S ordering
is not long-range then the superstructure reflections vanish and the r3-inflation
restores. The normalized intensities of reflections, I(q), are calculated as I(q) =
IS frexp (igry)|?/N? where fi and r; are the atomic scattering factor and the
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Fig.2. Simulation of the Bragg reflections from the cluster of about 4- 10° atoms
(fL = 1.3, fs=0.7). Longitudial scans were made for the (20,32) and (52,84) peaks
along all twofold axes and for the (18,29) and (47,76) peaks along all fivefold
axes. The last peak vanishes if fy = fs. All the equivalent reflections are plotted;
therefore the thickmess of lines characterizes the scatter both in widths and in
positions of the icosahedrally equivalent reflections. For reference, the 002 reflection
from the CsCl-type crystal of the same number of atoms is also shown by the
dashed line

position of k-th atom, q is the wave vector and N is the total number of atoms
in the cluster. The deviations of calculated reflections from their ideal icosahedral
positions are much smaller than their widths (the widths are determined mainly
by the finite sizes of the clusters). Nevertheless, those deviations and slightly
different widths of the reflections provide an evidence for phasonic disorder in the
grown clusters. It was rather surprising that the widths of reflections are so small
and comparable with the widths observed in real quasicrystals. We found that
until 2-10° atoms the reflection widths decrease in accordance with the cluster
size increasing; therefore it is not clear yet are there residual widths induced by
the disorder when the cluster grows ad infinitum.

We conclude that simple growth algorithm can produce the clusters with
the quasicrystalline ordering and with sharp diffraction peaks. Geometrically the
suggested model is similar (with factor 773) to the icosahedral glass model [5]
but instead of the ready-made clusters it is constructed from the atoms of two
sizes with rather realistic interatomic potentials. All the atoms have the unified
ordering and there is no need of ”glue” atoms. The phasonic jumps along twofold
and fivefold directions are allowed for many atoms: hence the clusters can relax
and improve their quality.

Among other things our model explains the closeness of the CsCl-type crystals
and the icosahedral quasicrystals on the phase diagrams of many alloys. It is also
intriguing that the dense-populated fivefold layers and distances between them in
the grown clusters are very similar to the puckered and flat atomic layers observed
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in decagonal quasicrystals [15]; perhaps, similar growth algorithm may be used for
the real three-dimensional decagonal quasicrystals and for their approximants.
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