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A consistent theory of the Heisenberg quantum antiferromagnet in the disordered
phase with short range antiferromagnetic order was developed on the basis of the path
integral for the spin coherent states. We have presented the Lagrangian of the theory in a
form which is explicitly invariant under rotations and have found natural variables in the
term of which one can construct a perturbation theory. The short wave spin fluctuations
are similar to the spin wave theory ones, and the long wave spin fluctuations are governed
by the nonlinear sigma model. We have also demonstrated that the short wave spin
fluctuations have to be considered accurately in the framework of the discrete version in
time of the path integral. In the framework of our approach we have obtained the response
function for the spin fluctuations for the whole region of the frequency w and the wave
vector k and have calculated the free energy of the system.

PACS: 75.50.Ee, 74.20.Mn

The theory of the two-dimensional Heisenberg antiferromagnet (AF) has attracted
great interest during the last years in connection with the problem of AF fluctuations in
copper oxides [1—-3]. The approach of these papers was based on the sigma model, which
describes the long wave fluctuations of the Heisenberg AF in the paramagnetic phase with
a short range antiferromagnetic order. The sigma model is the continuum model for the
unit vector n(¢,r), n =1 in the 1 + 2 time and space dimensions [4, 5]. As a long wave
theory, the sigma model can make a lot of physical predictions such as the structure of
the long wave fluctuations and the magnitude of the correlation length {2, 3, 6]. But up
to now a consistent theory of the spin fluctuations for the quantum AF (QAF) with short
range AF order was absent. This is just the topic of this paper.

Our approach to the description of the QAF is based on the functional integral for the
generalized partition function in terms of spin coherent states. We introduce the concept
of invariant spin coherent states and on this basis we formulate the theory.

We define the invariant spin coherent states (SCS) with the help of relation:

In;m >= exp(—ipS,) exp(—i685,) exp(—ivS,)|ss > . (1)

Here, the state |ss > is the state of spin s with the maximal spin projection s. The
unit vectors n and m are orthogonal: n? = 1, m® = 1, n-m = 0. 4, ¢ are the Euler
angles of the unit vector n = (cos ¢ siné,sin ¢ sind, cos§). The dependence on the vector
m is included in the angle 4 only, which, in fact determines only the phase factor in
the SCS (1). We can choose the angle ¢ in some special manner which distinguishes this
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definition from the standard one [7): tan = —k,/m,, where the vector k = [n x m)]. This
choice has a clear geometrical interpretation. The transformation (1) rotates the reference
coherent state which is characterized by the vectors ng = (0,0,1) and my = (1,0,0),
into the SCS (1). From this geometric interpretation it is obvious that upon changing
SCS by some rotation &, we have, |én;dm > = U (@)[n; m > without the phase factor
which was introduced and discussed by Perelomov (8]. In this way the scalar product
< n’;m'|n;m > is an invariant, and the matrix element < n’; m’|§|n; m > is a vector
under rotations. It seems that the vector m is an artificial one. However, for the problem
of the QAF it has some real meaning.

We consider the spin system which is described by the Heisenberg Hamiltonian with
an interaction of nearest neighbors ﬁye;(l,l’) =J$-$,8 -8 = 3(s + 1), where S,
are the spin operators; the index ! runs over a two-dimensional square lattice; the index I’
runs over the nearest neighbors of the site [; J > 0 is the exchange constant which, since
it is positive, corresponds to the AF spin interaction; and s is the magnitude of spin. The
most efficient method of dealing with a spin system is based on the representation of the
generalized partition function Z or the generating functional of the spin Green functions
Z = Tr[exp(—BH)] in the form of a functional integral over spin coherent states

z= [ [ Dutua,me)exp(Aln,me), )
Dumem) = ] 220w 0) - 1)dny(r,) 3

p=a,b;ir,l

where T = 1/ is the temperature, 7 is the imaginary time, and A(n) is the action of the
system. In the continuum approximation, which is valid in the leading order in 1/2s the
expression of the action A(n) is simplified

3
A(n,,ng) = —/O Zﬁm('r,l)df, Liot(1,1) = Liin (7, 1) + H7, 1), (4)
1

H(r, 1) = Js? Z n,(7,1) - np(7, 1), Bp(r,l) =< np;mpl-éa;lnp;mp) >, (5)
V=<l>
where Liin(7,1) = Ba + By, and B, s are the Berry phases for the sublattice p = a,b.
The idea of the short range AF order was used in Egs. (9)-(5), and we split our square
lattice into two AF sublattices a and b. For the kinetic part of the action Lg;, (which is
highly nonlinear) we use the concept of invariant coherent state parametrized by arbitrary
vectors myg .

In our case we can define these vectors m,p in the following manner: m,; = (np,o —
—zn,)/(1 — 2%, 2 = (n, -mp). As a result the invariant coherent states have a clear
meaning. Substituting these expressions for m, ; into Eq. (5) we have invariant forms
for the Berry phases By, which depend on both vectors n,, for each sublattice a,b. For
Liin we have an invariant form under rotations:

Ekin = ad

m(narl - nbrl) . [narl X nb,,,]_ (6)

Now we can introduce new more convenient variables (7, 1) and M(r,1) which realize
the stereographic mapping of a sphere:
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+0 (1 - M2/4) - [Q x M]

2 _ —
Nyp = 1+ M4 , =1, @-M=0. (7
In terms of these variables the total Lagrangian Lqpr = Liin + H has the final form
218(.) -M 9 ' 2 12
L o= T = . 1-—-M*/4)(1 — —
Liin 13 M4’ H=Js E {2 Q'[( /(1 -M'"/4)

'=<I>
-M- M|+ 0-M' Q- M}1+M?/4)7}(1+M?/4)7, 8)

where = Q,, Q' = Qv, M = My, M' = M,p. After this change of variables the
measure of integration Du(n) (7) becomes

(25 + 1)2(1 — M2/4)

D) = 1 Saasamas ° (' -1 5@ M) dadM, 9
7l

where the product in (9) is performed over the AF (doubled) lattice cells.

The variable Q is responsible for the AF fluctuations and the variable M for the ferro-
magnetic ones. The ferromagnetic fluctuations are small according to the parameter 1/2s
and therefore one can expand the Lagrangian Lapas (8) over M. The vector of the ferro-
magnetic fluctuations M plays the role (up to the factor 2s) of the canonical momentum
conjugate to the canonical coordinate . The term of first order in M coincides (after
change of variables) with previous results (1, 3].

From Eq. (1) one can easily extract the quadratic part of the total Lagrangian in the
variables 2 and M, Lqyad,

Lousa =2is(M- ) +Js* Y [0°-0-Q' +M?+M-M]. (10)
re<i>
The Lagrangian Lquqeq (10) is very simple but the measure Dy (9) is not simple due
to the presence of two delta-functions. Therefore we cannot simply perform the Gaussian
integration over the fields £ and M. To solve this problem we shall use the method of
the Lagrange multiplier A together with the saddle point approximation 4, 5] to eliminate
§(2% ~ 1). As a result, we shall have an additional integration over A with the additional
Lagrangian £y (,1) = [iA(r, 1) + ud/2T][Q%(r,1) — 1], where yo is the primary mass of
“the Q field, and J = Jsz.
To eliminate 6(2 - M) we shall use some kind of Faddev — Popov trick {5]. As
a result of this trick: 1) the factor §(f2-M) disappears from the measure (9);
2) M = My = M - (82 - M) in the Lagrangian (8); 3) an additional contribu-
tion to the action appears, the Lagrangian of which Ly, can be chosen in the form
Lga =TI Y pcers [(R-M)? 4+ (- M)(Q' - M')], such choice kills the most strong in-
teraction between the 2 and M fields in the Lagrangian (10) which appears due to the
substitution M = My,; 4) in the measure of the integration in (9) the additional factor
(det(B,4))"/? arises, where the operator By, is just the operator in the quadratic form in
the variable (£2- M) for Ly,. In this way, the expression (10) for Lgueq is valid in the lea-
ding order with respect to 1/2s. The final expression for the total quadratic Lagrangian
is Ltqu = ['quad + Lga + LAquad-
Now, from the quadratic part of the total Lagrangian L;,; one can find the Green
functions of the £ and M fields in ¢ = (w, k) representation
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, Gh, Gd o 1 [ Qx, -w
L q? q9 =
chq—(cg, G} )(M;) 23Lq( w, P.)°

Ly=w? +why, whe=PRQu=1-"%)J7"+1+m)ud/2

(Qu, ) = J(1 £ %), 1 = (1/2)(cos(kza) + cos(kya)), (11)
where the momentum k runs over the AF Brillouin band, a is the lattice constant, w =
= 2#xjT, and j is an integer number.

From Eq. (11) one can calculate the parameter of the spin wave nonlinearity of the
theory: < M2, >= (1/28)Cp(T), where Cpm(T) = 0.65075 for T < J, and Cm(T) =
=148491T/J for T > J.

We also have the saddle point condition for the A field < 02 >=1 which is the most
important constraint of the theory which determines its phase state:

NT Qx N Qx
. 2 - Q _ —_— = —
1=<@¥ >= qu Gy = 23 Z w?+wd 2 Zk 2wok(1 + 2n0k), (12)

o,

where N = 3, and noy = (exp(wox/T) — 1)7! is the Plank function. The right hand side
of Eq. (12) contains two terms. The first term Qy /2wy is responsible for the quantum
fluctuations of the €} fields. The second term Qxnox/wok is responsible for the classical
thermal fluctuations of the ) fields. The role of these two terms is quite different. The
quantum fluctuations are small according to the parameter of perturbation theory 1/2s
and, for the basic approximation, they can be neglected. The thermal fluctuations can be
considered in the continuum approximation which leads to the well known [1 — 3] zero order
expression for po po = T exp[—2nJs2/(TN)], and £ = hc,/p, where € is the correlation
length. From this expression for yg the important conclusion is follows: in the regime of
weak coupling the correlation length £ is much larger than the lattice constant a.

To close the theory it is helpful to define the polarization operator II(q) of the
Q field Axguad = —3 2, A" (@)[1(g)A(g), and the Green function of the A field is
(g)~!. In the lowest approximation II(g) is simply a loop from two Green function
G lp(g) = 2NT Y ¢ G%(¢')G%* (g — ¢'). The main contribution in 1/2s for ITy(q) comes
from the thermal fluctuations even at low temperatures T', because the integral strength
of such fluctuations is fixed by the saddle point condition (12) and does not depend on the
temperature. The explicit form for Ilp(g) can be obtained in two limiting cases hg > T
and hg < T, where ¢* = w? + c2k?. In the first case the momentum ¢’ ~ T'/c, < q, and
we can separate summation and integration over ¢’ and put ¢’ = 0 in G (g — ¢') in (14).
The result is extremely simple

_27(14+ %)

Io(q) = 4G%(g) = s Tl

g> kr, kr=T/c,. (13)
Notice, that it exceeds the quantum contribution in (14) Tlo(¢) = N/4q by the large
parameter 1657 /Ngq. For small ¢ < ¢,/a and q < kr our results coincide with [3].

The dynamical spin susceptibility x;;(w, k) for all values of w and k can be calculated.
In the lowest order in 1/2s we can use the lowest order relation n(Q(r,{), M(1,1), 7,{) ~
= exp(ial) - qaAr (7, 1) — [Q(7,1) x M(T,1)], where qur = (7/a,n/a) is the AF vector
(7). Calculating the average of two vectors n we get the dynamical spin susceptibility as
a sum of two terms x;;{w, k) = dij[xa(w,k) + xr(w, k)]. The spin susceptibility x 4 (w, k)
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is responsible for the AF fluctuations. It is proportional to the Green function G? analy-
tically continued to imaginary w and shifted by the AF vector q4r. For the ferromagnetic
spin susceptibility xr(w, k) we have a loop expression which can be calculated on the
basis of the thermal fluctuation domination: xr(w,k) ~ —(282/N)GM(q) for ¢ > kr. As
a result we have

Js2z(1 - 1)
N(w? — w2, + iwd)’

Js?z(1 + yx+)
2(w? — wi. +iwd)’

xalw, k) = - xr(w, k) = — (14)
where k* =k — qaF.

The theory of the spin fluctuations in the disordered QAF at sufficiently low tempe-
rature T < J allows to perform the scale separation. In this case kr < 7 /a the thermal
fluctuations can be considered by the "renormalized classical” manner [2]. The magnitude
of the quantum fluctuations at ¢ < kr is small in comparison with the classical fluctu-
ations. In this situation the parameters of the effective long wave, low frequency sigma
model are renormalized by the quantum fluctuations. This renormalization is performed
with respect to the parameter 1/23, but the interaction of the thermal fluctuations with
the scales |k| < kr and w < T is over parameter 1/N, where N is the number of compo-
nents of the n field of the long wave, low frequency nonlinear sigma model. This picture
follows directly from the approach of this paper.

Unfortunately, the continuum approximation in time is not working when we are cal-
culating corrections to the basic approximation. The reason for the this observation is
in the canonical structure of the Lagrangian (8) and the Green function (11): the sums
over w including this Green function are ambiguous and must be defined at the final time
step A. Instead of the expression (4) for the action A(n) we shall use the more accurate
expression for A(n) in which the integral over 7 is changed to the sum over v = jA,
j=0,1,..,N; — 1, where AN, = 3. Now Lin(j,1) is not Berry phase and consists
of two parts Liin = Lmod + Lpha- The first term is pure real, the second term is pure
imaginary: '

R *®
Lomod = —-Z- S In[(1+n, 05)/2], Loha= —ﬁ Sl (R‘j—ﬁ"). (15)

p=a,b p=a,b P==p

Here the quantity R, = n, - (mp + ik;) for p = a,b; vectors n,m,k were defined at
the introduction of the SCS; the underlined quantities n,m,k correspond to the time
A(j + 1), the usual ones correspond to the time Aj. Notice, that the Lagrangian £,,,4
can be expressed in terms of vectors n, ; only, but Lyna can not.

The Hamiltonian #{(n) can be obtained on the basis of the following relation for the
matrix element of the spin operator §: < gl§|n >= &(n,n) < njn >, where the vector
S(mn,n) = (n+n —inxn})/(1+n-n). If we substitute them into the matrix element
of the Heisenberg Hamiltonian we obtain

’H(n) =Js’ z S(Ea n) : S(g’,n'). ‘ (16)
lre<i>

It was assumed that all vectors np,m,,k, for p = a,b entering in Egs. (15)-(16) are
functions of the dynamical variables 2 and M according to Eq. (7). For example,
expansion of Lpna over the vector M has a rather complicated form but one can prove
that it is regular and contains only odd powers of M.
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By expanding the Lagrangians Lmod, Lpha (15), and the Hamiltonian (16) in the
vector M up to second order we get Lgyad = (Liin + H)|quad

ALpuaa =81 -2 - Q+M* -M-M+i(Q-M-Q-M)|+
+AJs2 ) 2:-9-Q2- 9+ M-M+M-M -i@-M-02-M)]. (17)
re<i>

According to the analysis performed above it is necessary to add to the Lagrangian Lgy44
(17) the quadratic part of the Lagrangian £ and the gauge Lagrangian £,, generalizing
for the case of finite time step

Loa = (s/A)[(R-M)* ~(2-M)(©-M)]+Js* > [(2-M)(©-M)+(2-M)(Q'- M),
re<i>
which also kills the most strong interaction between the £ and M fields. The total

quadratic Lagrangian is Liqu = Lguad + Lga + Lrguad- The Green function for this case
is -

o 1 ( 1-c, +AJ(co + ), —8,(1-AJ) )
e 231:((1) 3w(1 - AJ); 1-co+ AJ(C‘, - 7k) + A/"’%/ZJ '
L(g) = (1 - AT + Apg/4T)[2(1 - cu) + A2wgy]. (18)

Here ¢, = cos(wA) and s, = sin(wA); the quantities Qu, Py, and the bare frequency
wok were defined in (11). At Aw < 1 this Green function G, passes into (11) up to
the normalization factor 1/A. The Green function (18) is well defined in a sense that
the summation over w in expressions including it must be perfomed in limits —x/A <
< w < w/A. A result of such averaging depends crucially on the contribution at large
w ~ w/A. For example, we have < M;M; >= (1/48)8;;(1 + cp — 1), < M;M; >=
= (1/48)d;j(co —c1). We see that the average < M? > discussed above in fact corresponds
to the average < M - M > but the average < M? > is different.

The free energy of QAF in the paramagnetic state has three contributions Far =
= —TIn(Z) = Fapm + Fx + Fga, Z = ZamZrZys. In the lowest approximation in 1/2s,
Zam, Zy, and Zg4, are powers of determinants. The explicit form of these determinants
leads to

Fan = 220 > alZ(@)} Foo = S 5 nl2sQ(a), By = = 5 nls'Mo(a). (19

One can check that Fqops has finite limit at A — 0, AN, = 8. Fy, and F» do not have
finite limit at A — 0, AN, = (3 separately, but their sum has a finite limit. After some
transformation the free energy Fgar of QAF in the lowest order in 1/2s can be presented
in a form FQAp = ((N - 1)/N)FQM + Fy;, where

Fom = =N,J +2N, ¥ {wo/2 + T Infl ~ exp(~wox/T)]}, (20)
k
_ TN, s{w? + wk )Mo (q)
= B o s

Here 2N, is the number of the lattice sites, and the polarization operator ITy(q) was defined
above. The temperature dependent part of the free energy (20) at small temperatures
T < J is proportional to F4r =~ N,T%/J. Such contribution has two origins: one from
Faar and another one from F);.
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Now we present the result of the calculation of corrections to the mass operators of
the © and M fields. In the lowest order in 1/2s these corrections can be presented
as renormalization of the initial quadratic Lagrangian (17). It is necessary to have the
Lagrangian Lo and the Hamiltonian H up to fourth order in the field M, and the
Lagrangian Lpne up to third order.

The effective Lagrangian L.¢ in the first 1/2s approximation is

ALcss = slao(l — - Q) + bo(M? ~ M - M) —ieo(2- M - Q- M)] +

+AJs? Z [a1(1—ﬂ-ﬂ)+a2(1—n-ﬂ')+a3(1—ﬂ'-ﬂ)+b1M2+
le<i>
+b2M-M+baM'M'+b4M"_M—iel(n~_M_—ﬂ-M)—iez(ﬂ’~M—-Q_-M')], (21)

where the constants ag, ...,e; are a; = af + ga;, b; =b0 +g8;, e = el + gv;, where
g = (N —1)/4s, i = 0,1,2,3. The constants a?, b?, €? follow from (17). The explicit
form of the constants ¢, G, v; will be presented in the complete version of this paper.

We shall give the explicit result for the correlation radius in this order in 1/23 on the
basis of Eq. (12). The contribution of different frequencies w and momenta k in this
constraint relation can be separated into two parts. The first part is the high frequency
and momentum part. To calculate this contribution it is sufficient to take the Green
function G®(g) in the bare approximation (18) because this contribution is of the order
1/2s. The second contribution which is proportional to the distribution function ny
can be considered in the continuum approximation but with 1/2s corrections taken into
account: G%(g) ~ 1/[2a?x L A(w? + wd), x1 = ps/ 2, wi = c2k? + . Here p, = Js2ags;
CE = 66—202361234.,720,2/2, where a3 = as + ag, by234 = by + bs + b3 + by. Now, instead of
the Eq. (12) we bave (N/438p,) > [nx/wx] = R, R =1 —g(1 + ¢y + ¢1). The factor R
includes in itself the direct short wave renormalizations. Performing the integration we
have y = T exp[~2mp,/TN), p, = psR, £ = hc,/u. The actual temperature dependence
is changed in the pre exponent factor (T' — J) if we take into account the long wave
fluctuations in the next order in 1/N approximation [3].
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