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We propose a scaling description of phase separation of polymer solutions. The scaling
incorporates three universal limiting regimes: the Ising limit asymptotically close to the
critical point of phase separation, the “ideal gas” limit for the pure-solvent phase, and
the tricritical limit for the polymer-rich phase asymptotically close to the theta point. We
have also developed a phenomenological crossover theory based on the near-tricritical-
point Landau expansion renormalized by fluctuations. This theory validates the proposed
scaled representation of experimental data and crossover to tricriticality.
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Phase separation in solutions of polymers in low-molecular-weight (monomer-like)
solvents changes dramatically with increase of the degree of polymerization (Fig.1) [1].
Like in simple binary liquids, asymptotically close to the critical point the coexistence
curves obey a universal power law of the form

¢~ ¢ ==£Bo |7, (1)

where ¢ is the volume fraction of polymer, ¢, is the critical volume fraction; r = (T —
—~T.)/T, T is the temperature, T, is the critical temperature; 8 = 0.326 £+ 0.001 is a
universal 3-dimensional (3D) Ising critical exponent [2], By is a system-dependent critical
amplitude. However, with increase of the polymer molecular weight, the range of validity
of the symmetric parabolic-like behavior given by Eq.(1) shrinks, yielding an asymmetric
angle-like coexistence boundary near the theta-point [3] (Fig.1). Physically, it means that
in the limit of infinite molecular weight (upon approaching the theta-point) the critical
amplitude By and the range of 3D-Ising behavior vanish.

Qualitatively, the phenomenon of separation of a polymer solution into two coexisting
phases was explained long ago by Flory [3]. According to the Flory theory, the dependence
of the critical temperature T and the critical volume fraction ¢. of the polymer on the
degree of polymerization N is T. = ©/(1 + 1/v/N)? and ¢, = 1/(1 + V'N), where O is
the theta-temperature. As elucidated by Widom {4], for any value of the scaling variable
z = %T\/N_ {where N is assumed to be large and 7 to be small), the phase coexistence
in the Flory system can be represented in terms of a scaling form. The concentration
difference ¢" —¢’, where ¢ and ¢’ are the volume fractions of polymer in the concentrated
and dilute phases, respectively, is given by
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Although Eq. (2) yields the angle-like coexistence in the theta-point limit (z — o0}, it
violates Eq. (1) in the critical-point limit (z — 0). The reason is well known: the Flory
theory is essentially a mean-field theory which, just like the van der Waals theory for
simple fluids, ignores critical fluctuations. It is possible to modify the Flory model to
include critical fluctuations, which does indeed predict both the critical and the theta-point
limits correctly as well as the crossover between them (5]. However, restrictions implied
by the Flory model for the system-dependent parameters (even after incorporating the
fluctuations), and, especially, for the dependence of these parameters upon the degree of
polymerization, are too tight to apply the model to real systems.

An attempt to describe the data shown in Fig. 1 by a generalized form of Eq.(2) with
VN replaced by ¢!, the {/z by £ at the limit £ — 0, and z by (T, —T)/(© —T,) in both
limits, was made by Isumi and Miyake [6]. A practical disadvantage of this approach is
that, when T is close to the theta-temperature (large z), even small changes in © (which
is not a directly obtainable parameter) cause dramatic changes in z, making the scaling
representation extremely sensitive to the choice of O.

In this letter we propose a general scaling description of phase separation in polymer
solutions. Experiments have shown that ¢. does not satisfy the dependence on the degree
of polymerization implied by the Flory theory [7]. The description we propose is not based
on any specific molecular model and does not incorporate any particular dependence of
the critical parameters on the degree of polymerization. Instead, it uses experimentally
well defined variables, namely, the reduced temperature distance to the critical point 7
and the critical volume fraction ¢.. Furthermore, to obtain an explicit form of the scaling
function, we have developed a crossover theory by incorporating fluctuations into a Landau
expansion near the tricritical point. Furthermore, we shall elucidate the physical nature of
the crossover phenomena: very close to the critical phase-separation point the correlation

839



length of the concentration fluctuations becomes much larger than the polymer molecular
size (radius of gyration) and the system exhibits universal 3D Ising behavior. Very close
to the theta-point the radius of gyration becomes larger than the correlation length and
the system exhibits tricritical mean-field behavior (8].

We assume that a polymer solution can be described by a scaling function y(z) with
three universal limits

+K 2P (z—0),
y(z) = 1z (z = oo, polymer — richphase), (3)
1 (z = oo, solvent — richphase),
where
y=A(¢—9c)/Bod?, z=Clrl/de, (4)

and K = AC~? with A and C being system-dependent coefficients. The coefficient C
defines the limiting (M,, — oo) slope of the phase-separation boundary (Fig.1). The
coefficient A can be obtained from a linear correlation between the asymptotic amplitude
Bo and ¢!~? (insert in Fig.1) for high molecular weights of polymer (small @), so that
v = (¢ — ¢c)/¢c in this limit. The coefficient A becomes a weak function of ¢, for lower
molecular weights and thus allows for incorporating non-asymptotic regular effects. The
Ising limit in Eq.(3) will be perfectly universal for different systems if the coefficient
K = A/CP® is not system-dependent. Although there is no theoretical proof for such
universality, for the three polymer solutions we have analyzed, the combination AC—#
turns out to be the same.

In Fig.2 we show coexistence-curve data obtained by Dobashi et al. 1] for polystyrene
in methylcyclohexane, by Xia et al. [9] for polymethylmethacrylate in 3-octanone, and by
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Fig.2. Universal scaled coexistence curve of polymer solutions: (a) the entire range, (b) the critical region.
Solid line is calculated from the crossover theory

Nakata et al. [10] for polystyrene in cyclohexane, scaled according to Eq.(3). We see that
all data points collapse onto a single master curve. In Fig.3, a crossover from critical Ising
behavior (for z < 1) to the theta behavior (for z 3> 1) is clearly seen. As z increases,
the volume fraction ¢’ of the solvent-rich phase goes to zero (the “ideal-gas” limit), while
the volume fraction ¢” /¢, of the polymer-rich phase tends to its theta limit 12, indicated
in Fig.3 by the dashed line. The slope of the dashed line on a double logarithmic scale
corresponds to the tricritical value of 8= 1.

De Gennes [11] has pointed out that the theta-point in the polymer-solvent system
is a tricritical point. A tricritical point is a point which separates lines of second-order
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(A-line) and first-order transitions. The states above the theta-temperature on the ¢ =0
(shown by the cogged line in Fig.1) correspond to the critical-like self-avoiding-walk sin-
gularities associated with the behavior of long (N — o0) polymer molecules at infinite
dilution [11, 12]. This A-line is associated with an n-component vector order parameter
(%) in the limit n — 0 [11]. The field h, conjugate to the order parameter, is zero along
the A-line but it becomes non-zero for finite degrees of polymerization. The correlation
length associated with the order parameter is the radius of gyration, which diverges in the
limit of infinite degree of polymerization (zero field). Below the theta (tricritical) point,
the polymer order parameter exhibits a discontinuity accompanied by phase separation
and by a discontinuity in the concentration of the polymer. The line of critical phase-
separation points shown in Fig.1 is a nonzero-field critical (“wing”) line originating from
the tricritical point. The order parameter for the fluid-fluid phase separation, associated
‘with the concentration ¢, and the polymer order parameter 1 belong to different classes
of universality. Tricriticality emerges as a result of a coupling between these two or-
der parameters and exhibits mean-field behavior with small logarithmic corrections [13].
Physically, ¢ is proportional to the concentration of end points of the polymer chain,
while the concentration ¢ is proportional to le2 [11). Therefore, a proper description
of the phase separation near the tricritical point should incorporate a crossover between
Ising critical behavior and (almost) mean-field tricritical behavior.

To obtain an explicit form of the proposed scaling description, we start with the
Landau expansion of the critical part of the dimensionless thermodynamic potential A
of a two-component system in the vicinity of the tricritical point in powers of the order
parameter ¢ [14]: _ ‘
AR = 7Y? ~ Mp* + vy’ ~ hy, (5)

where h is the ordering field; 7 = a(Af + bAT) is the temperature-like scaling field,
AT = (T — ©)/T with © being the tricritical (theta) temperature, Aji = i — jip with
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ji = (2 /va—p1/v1)/RT being the reduced polymer /solvent chemical potential difference,
v9 and v; the corresponding molecular volumes, jig is the value of the chemical potential at
the tricritical (theta) point; A = AAf; a, b, Ag, and v are system-dependent parameters.
The conditions b = 0 and 7 = 0 determine the A-line. At the tricritical point, the
coefficient X changes its sign, being negative along the A-line above © and positive below O.

The equilibrium values 1’ and 1" of the order parameter are found from the conditions
(8AQ/8¢)r, = 0 and AQ(¥') = AQ(Y"). The concentration (volume fraction) ¢ is
related to the polymer order parameter ¢ by

_(oaf) 2 e
¢_ (aAﬁ)T’h —m.b )‘Ow . (6)

In the limit of infinite degree of polymerization (h = 0), we find for the limiting phase-
separation boundary shown by the dashed line in Fig.1:

_ hea

- 22 N
; " . 0
¢ =0, ¢"=T-bAT| [1 —-4mb|AT|] . (7

At non-zero h, a phase separation (“wing”) critical line emerges, defined by

2/5
wm=3(3) e ®
~1
T.(h) = © {1 + 7\%%5 [ay?Z(R) ~ 3Xoy? (h)]} . (9)

Asymptotically, the ratio of the slopes of the limiting (h = 0) phase-separation boundary
to the critical “wing” line is universal in the Landau expansion and is equal to 5/2. A
comparison between the results obtained from the Landau expansion (5) and from the
mean-field Flory model at N >> 1 has shown that the ordering field h can be identified with
the degree of polymerization N as (2h/v)_2/ 3 ~ V/N. Consequently, the near-tricritical
Landau model satisfies the mean-field scaling given by Eq. (2}.

The Landau theory does not include fluctuations and does not recover the 3D-Ising
limit exhibited by real polymer systems. Therefore, we have modified the expansion (5)
using the crossover procedure based on the renormalization-group matching method (see
[5) and references therein). The details of the calculations will be published elsewhere.
The key point of the approach is representing the polymer order parameter as a sum of a
regular ¢y and a “critical” §4 part ¥ = ¢p + 69 and rewriting expansion (5) in terms of
d1. The critical part is expressed in terms of the distance to the critical temperature (at
certain field h) 7 = [T — T.(h)] /T. The crossover procedure is implemented by replacing
the temperature variable 7 and the order parameter §¢ in the corresponding Landau
expansion with renormalized quantities 7y and %, respectively, such that [5]

T =TY T2 Gy = spY (/A8 (10)

where a, v, v, and A, are universal critical exponents with the following 3D-Ising values
adopted in this work: a = 0.11, v = 1.239, v = 0.630, and A, = 0.51 [2, 5]. The crossover
function Y is to be determined from the equation

1-(1-a)Y =a[l+ (A/k)?)/2YY/8, (11)
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where @, a normalized coupling constant roughly independent of h, and A = Ao(2h/v)*/5,

a dimensionless “cutoff” wavenumber assumed to be inversely proportional to the radius
of gyration Rg, are two crossover parameters. The parameter x is inversely proportional
{0 the correlation length and serves as an effective distance to the critical point. In the
simplest approximation

K2 = ~2¢,7Y B 1/A0 (12)

where the parameter c¢; = ¢y (2h/v)?/® is associated with the amplitude £, of the mean-
field correlation length £. Close to the critical point Y — (k/@A)?*/¥ — 0 and the
thermodynamic properties exhibit 3D-Ising asymptotic behavior. Far away from the
critical point, ¥ — 1, and the mean-field expansion (5) is recovered. The crossover
temperature (“Ginzburg number”) 7o ~ (@A)?/c; = [(@Ao)?/cto)(2h/v)?/® ~ ¢, vanishes
at the theta (tricritical)-point. The physical origin of the crossover to tricriticality is
a competition between the radius of gyration Rs and the correlation length &, since
A/k ~ £/Rg, while the parameter A%/c; ~ (€,/Rg)? defines the crossover temperature 7o.
Specific N-dependencies of the Ising critical amplitudes, predicted by de Gennes’ scaling
[7, 11], can be also obtained from our theory with the assumption (2h/v)~%/% ~ +/N.

We have applied the renormalized (crossover) Landau model to describe the experi-
mental data {1, 9, 10] on phase separation in polymer systems and have obtained excellent
agreement (solid lines in Figs.1-3). The description of all the systems with a variety of
degrees of polymerization requires only four non-universal parameters, namely a, Ag,
C = Xoa/v, and the “bare” crossover temperature ~ (Ag)2/co, which do not depend
on molecular weight. Moreover, the combination (@Ag)?/c;o and AC~8 can be taken to
be the same within the available experimental resolution not only for different molecular-
weight samples, but also for different substances. This feature makes the solid curve in
Figs.2 and 3 truly universal for all systems studied.

The universality demonstrated in Fig.3 requires both 7 and ¢, to be small. In first
approximation some non-asymptotic effects are incorporated into the universal scaling
description. The slight dependence of A on ¢, for moderate molecular weights (at larger
¢c), shown in Fig.1, absorbs non-asymptotic corrections to the critical limit. A non-
asymptotic (at larger 7) non-linearity of the phase separation boundary in the tricritical
(zero field) limit can be accounted for by a term quadratic in 7.

Renormalization-group calculations {13] have shown the existence of logarithmic cor-
rections to mean-field tricriticality: the coefficients v and A¢ in expansion (5) are renor-
malized, so that the critical line has zero slope at the theta-point. The resolution of
the existing experimental data is not sufficient to convincingly determine the logarithmic
corrections: the description is equally good with or without the corrections.
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