Home
For authors
Submission status

Current
Archive (English)
Archive
   Volumes 81-92
   Volumes 41-60
   Volumes 21-40
   Volumes 1-20
   Volumes 61-80
      Volume 80
      Volume 79
      Volume 78
      Volume 77
      Volume 76
      Volume 75
      Volume 74
      Volume 73
      Volume 72
      Volume 71
      Volume 70
      Volume 69
      Volume 68
      Volume 67
      Volume 66
      Volume 65
      Volume 64
      Volume 63
      Volume 62
      Volume 61
Search
VOLUME 71 (2000) | ISSUE 10 | PAGE 600
Critical exponents for three- dimensional impure Ising model in the five- loop approximation
The renormalizationgroup functions governing the critical behavior of the three-dimensional weakly-disordered Ising model are calculated in the five-loop approximation. The random fixed point location and critical exponents for impure Ising systems are estimated by means of the Pad6-Borel-Leroy resummation of the renormalization-group expansions derived. The asymptotic critical exponents are found to be: 7 = 1.325 ±0.003, η = 0.025 ± 0.01, ν 0.671 ± 0.005, a = -0.0125 ± 0.008, β = 0.344 ± 0.006, while for the correction-to-scaling exponent less accurate estimate ω = 0.32 ± 0.06 is obtained.