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We consider an output coupling of magnetically trapped two species fermi gas to a
untrapped species that can be done using rf or optical Raman transitions. The process
can be used to produce an intense output beam of fermionic atoms once the device reaches
a threshold for zero temperature case. For finite temperatures there is no threshold as the
output current grows smoothly. The behaviour that recalls optical convenient and cavity
quantum electrodynamics lasers puts us on to the idea to call the device as fermionic
atom laser.
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Since the experimental realisation of Bose — Einstein condensation (BEC) [1] there still
exists a great interest in properties of trapped degenerate gases [2]. Although most atten-
tion is being paid to alkali bosons recently some work both experimental and theoretical
was done on fermi gases [3-—5]. Another current direction researchers are pursuing is
the atom laser, or bo.er, idea which got a number of proposals [6] and had been shown
to be realizable experimentally [7]. The idea is to couple out the formed condensates
to get an output coherent beam of atoms. Other bosers proposed are the excitonic [8]
and exciton-polariton [9] lasers. Atomic parametric oscillator which produces correlated
atomic beams was proposed in [10].

Up to now most attention was paid only to the bosonic atom lasers. That is obviously
due to a great progress in the BEC area. However there exists yet another interesting
possibility to get coherent type of atomic waves. Recently in a series of papers Stoof,
Houbiers et al. [4] and Baranov et al. [5] discussed a possibility of formation of BCS
states and of superfluidity in atomic ®Li in a magnetic trap. Although the formation of
cooper pairs was not yet observed experimentally their estimates show that the process
is rather possible. Accepting the possibility of formation of the fermionic pairs (in the
momentum space) one can wonder what would happen in the case of their coupling out
of the trap.

In this paper we present a simple scheme for the output coupling. We will show that
the problem is akin to the case of electron tunneling between a superconductor and a
normal metal and will state that the device possesses a threshold at zero temperature
while the device behaves as a thresholdless one at finite temperatures. We then point out
an analogy between the device and cavity quantum electrodynamics (QED) lasers [11].

Some of the boser proposals exploited the Born—Markov approximation that was
shown as being failed for the case of an atom laser [12]. Very recently a non-Markovian
stochastic Schrédinger equation has been derived [13] that opens up the way for further in-
vestigation of the atom lasers, being open quantum systems coupled to a finite number of
output oscillators as is the case. Although a detailed microscopic theory which should in-
clude quantum fiuctuations present would provide a deeper understanding of the process,
here we present a simple theory without accounting fully quantum fluctuations to have an
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idea what is going on in the fermionic atom laser case. However in the present paper we
do not make the markovian approximation but just work within an Hamiltonian approach
which was applied to the superconductive tunneling problem [14]. Another simplification
we do is considering the problem in an homogeneous approximation assuming that the
magnetic trap fields are homogeneous so that particles are simply placed in a potential
well box. We will trace out an analogy between the case and the electron tunneling [15]
and will also consider finite temperatures [16, 17].

Let us consider two species of fermions confined in a trap which interact to each other
by two-body collisions (s-wave scattering). The Hamiltonian with one output channel
reads

H= 5 [ (050 [ g7+ Vo) - ] o0~
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Here 9} (r) and 1, (r) are the creation and annihilation field operators for the two fermi-
onic species (o = +) and ¥,(r) describes the output field with chemical potential y, and
Ao coupling constants; V,,(r) are the trapping potentials,V,(r) is the repelling potential,
Lo the chemical potentials, M the mass of the particles and g the interaction parameter.

The Hamiltonian describes, e.g. trapped atomic Li (fermion) gas. The two trapped
levels correspond to |6) and |5) ones [4] and we choose transitions to the |3) untrapped
level as the output channel. The transitions from trapped levels to the untrapped one can
be provided e.g. by rf fields as had been used for the bosons’ output coupling [7].

Now we expand the annihilation and creation operators for the second quantized field
in trap eigenfunctions as:

Yo (r) = Z Une(T)ns,  Polr) = Z Vko(T)bi (2)
n k

and after linearisation that introduces the gap A and assuming the functions v, (r) and
vgo(r) are known, we present the Hamiltonian of our model in the form
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After the diagonalization brocedure the Hamiltonian takes the following form
H= Y wpchscne + Z Broblbi + D (Gnkoblcns + Brroblct o, +he),  (5)

noe=-+,— nko

where we have defined
Anke — unT;kaa ﬂnkrf = U'nTnkcra Wne = Hna'(‘unlz + |'vnl2) + 26nna(u:{vn + C-C-) (6)

and

» f
Gn,+ = UnCn,4+ + ’U;Ct_n‘~, a‘tn,— = —UnCp,+ + UpCp,—- (7)

For the model under consideration one has 4]

1 n
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where &, = €, — ep is the energy difference from the "mean” fermi level defined as
er = (4 +p-)/2, here py are the fermi levels of the two species; the cooper particles have
the dispersion relation wp, = —mydep++/€2 + |A|? withmy = +1/2 and dep = py—p_
is the difference between the fermi levels of the species.

For the fermionic output coupler we distinguish two different cases with the two species
chemical potentials being equal (uy = p_ = p) and nonequal (u4 # p—) to each other.
Here we consider only the case of equal chemical potentials that gives the highest critical
BCS temperature [4].

We now proceed with the Hamiltonian (5) to calculate the output intensity or current
of the fermionic beam that is the mean of the derivative of number of fermions coupled
out < N, > where N, = P blbk. One can carry out the standard procedure [14, 15] to
calculate the quantity and will arrive at the formula

() « ZiTnki 2 [Np(Eno) — Np(Ew)] 8(Boo — Ex ~ 6E) +

v} ([Np(~Eng) — Np(Ep)|6(Ens + Ex + 0E)) (9)

where Np(Ej) is the Fermi distribution for noninteracting particles Np(Eg) =
= 1/{exp(BEyx) + 1] with energy spectrum FE) and the inverse temperature 3 = 1/kgT.
Here n runs for the trap level states with dispersion relation E,, = 1/£2 + |A|? (dep = 0)
and k for the output free particle dispersion Ej = (hk)?/2M (we assume the potentials
Vi (x) and V_(x) to be space independent so they just shift the chemical potentials p4 ).
S E is the difference ("bias”) between the Fermi levels of in-trap and out-of-trap fermions,
which is proportional to the magnetic field. Note that here §E > 0 so that the second
term in the braces vanishes.

The Eq.(9) can be seen as the Fermi’s golden rule applied for the transitions from
the trap states to the output so that Np(En,)[1 — Np(Er)] — [1 — Np(Epo )] Np(Er) =
= Np(Epns)— Nr(Ey) accounts for the probability of particle to transit from the occupied
trap level E,, to the unoccupied output level Ej and the summing includes all possible
transitions. The Eq.(9) accounts for transitions of both the particles and ”antiparticles”
(holes) with energies =E,, respectively. Note that Np(—E,,) =1 — Np(Ens).

Let us first consider zero temperature case. In this case the Fermi distribution Ng(FE)
becomes a step function being equal to one below the fermi level and zero above that
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level. The case with equal chemical potentials is very similar to the superconductor-
normal metal electron tunneling process {15-17]. For that case the Eq.(9) simplifies to

become
<No> x /(OE)2 — |A] -6 (SE — |A]). (10)

Here 6 (0F — |A|) is Heviside’s step function.

There is a threshold here, corresponding to the gap value E = |A|. It can be
explained as a value of the energy difference equal to the "bound energy” of the formed
fermionic pair: one of the paired particles should get energy for output coupling enough
that the partner particle could jump over the gap. The value of the gap for the trapped
fermions is of the order of the BCS transition temperature T, which is about 30nK
[4]. The value of the § E which is the difference between the two fermi levels can be in
principle adjusted to the value of the gap, however it needs the two species to be trapped
by an extremely weak magnetic field. A lower limit of the magnetic field was estimated
to be B > 3’”— ~ 0.011T [4], where ans is the hyperfine constant and p. the electron
magneton. On the other hand, the energy difference which can be achieved is about
0E ~ 1075 — 10~*K. So a possibility to observe the threshold is questionable, however
it exists in principle. Once a larger transition temperature will be achieved the device
possesses the threshold.

In the case of finite temperatures Eq.(9) gives a smooth output current dependence
on the applied field (see Figure). There is no threshold here since the current grows
smoothly when the field increases. The reason is that for finite temperatures there always
exist particles at the excited levels so that unpaired fermions at the fermi level can be
coupled out for any value of the bias. This case is reminiscent of cavity QED lasers with
spontaneous photons being emitted into cavity mode [11]. So that the thermal fluctuations
at finite temperatures which create particles at upper levels in trapped fermi gas play the
same role as spontaneous emission induced noise in the case of cavity QED lasers resulting

in thresholdless lasing.

Fermionic atom laser’s output < N, > (ar-
bitrary units) as function’ of the bias ¢E
(scaled in units of the gap A) for T/T, =
= 0.5 (full curve) and T/T; = 0.25 (dashed curve)
temperatures for the case of equal chemical po-
tentials of trapped species py = pu_: the mass
of °Li atom M = 10~28 kg; the fermi momentum
kp = 0.42-10°m—!; the trap size L = 15 um; the
gap is A = 0.9.10730]

Output beam intensity

Bias

The consideration can be extended to the cases with both traps containing fermions in
BCS states that would be an analog of superconductor-superconductor electron tunneling
[15-17] or with traps containing noninteracting fermi gases without pairing that is the
normal metal — normal metal tunneling case. Imagine also a case of two traps when one of
the traps contains cooper pairs and the other one two species of interacting fermions. The
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process of particle exchange between the traps would be similar to a model describing
Anderson impurity embedded in a superconductor that had recently been solved exactly
for the zero temperature case [18]. All these processes can serve as tests of fundamen-
tal quantum physics phenomena. Actually, there exists an interesting possibility to get
Schroedinger cat states for the case of two trapped BCS fermi gases in the direct analogy
with a Josephson junction case proposed in [19].

In conclusion, we have considered output coupling of trapped fermionic pairs. For
zero temperature case we have found a threshold, a critical value of the trapping magnetic
field, above which the output current of fermions begins to grow. For finite temperatures
the output beam grows smoothly without a threshold transition. Both threshold and
thresholdless behaviors remind optical lasers: convenient lasers and cavity QED or micro-
lasers, so that we called the device as fermionic atom laser.
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