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The invariant integration method for Chern-Simons theory defined on compact hy-
perbolic spaces of the form I'\H® is verified in the semiclassical approximation. The
semiclassical limit for the partition function is calculated. We discuss briefly a contribu-
tion to the sum over topologies in 3-dimensional quantum gravity.

PACS: 02.40.Vh, 04.60.-m, 04.62.+v

Introduction. It is known that topological invariants associated with 3-manifolds
can be constructed within the framework of Chern-Simons gauge theory [1]. These values
were specified in terms of the axioms of topological quantum field theory [2], whereas
equivalent derivation of invariants was also given combinatorially in {3, 4], where modular
Hopf algebras related to quantum groups have been used. The Witten’s (topological)
invariants have been explicitly calculated for a number of 3-manifolds and gauge groups
(6-11]. The semiclassical approximation for the Chern - Simons partition function 20(k)
can be given by the asymptotic £ — oo of Witten’s invariant of a 3-manifold M and a
gauge group G. Typically this expression is a partition function of quadratic functional.

This note is an extension of the previous paper [12]. Our aim here will be to use the
invariant integration method [13, 14] in its simplest form for the semiclassical approxima-
tion for Chern — Simons theory, defined on hyperbolic 3-manifolds of the form M = I'\ H?,
where HP is the Lobachevsky space and T is a co-compact discrete group of isometries
(see Ref. [15] for detail).
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The semiclassical approximation for the partition function. The partition
function associated to Chern — Simons gauge theory has the form

(k) = / DAexplikCS(4), ke, 1)
where
CS(A)=4i/'ﬁ<AAdA+§AAAAA). @)
T JM

The quantity 20(k) is a {well-defined) topological invariant of M. The formal integration
in (1) is over the gauge fields A in a trivial bundle, i.e. 1-forms on a 3-dimensional
manifold M with values in Lie algebra g of gauge group G.

In the limit ¥ — oo Eq. (1) is given by its semiclassical approximation, involving only
partition functions of quadratic functionals [1]:

3 explikCS(4y)] / DB exp (:f; /M’I‘r (BAdA,B)) . 3)

[As]

In Eq. (3) the sum is taken over representatives A; for each point [A;] in the moduli-
space of flat gauge fields on M. In addition, B is Lie-algebra-valued 1-form and dg, is
the covariant derivative determined by Ay, namely d4, B = dB + [Ay, B).

We shall use the invariant integration method [13, 14], which enables the partition
functions in Eq.(3) to be evaluated in complete generality. Let M be a compact oriented
Riemannian manifold without boundary, and n = 2m + 1 = dimM is the dimension of
the manifold. Let x : m (M) — O(V, (-, )v) be a representation of m1{M) on real vec-
torspace V. The mapping x determines (on a basis of standard construction in differential
geometry) a real flat vectorbundle £ over M and a flat connection map V, on the space
QP(M, ) of differential p-forms on M with values in £. One can say that y determines
the space of smooth sections in the vectorbundle A?(TM)* ® £. Omne can construct from
the metric on M and Hermitian structure in £ a Hermitian structure in A(TM)* ® £ and
the inner products {, -}, in the space Q™ (M, £). Thus

SO = (w’ 0w>m, 0= *Vma (4)

where (*) is the Hodge-star map. The map O is formally self-adjoint with the property
0? = V, V. Suppose that the quadratic functional (4) is defined on the space G =
= G(M, £) of smooth sections in a real Hermitian vectorbundle ¢ over M. There exists a
canonical topological elliptic resolvent R(Se), related to the functional (4), namely

0 -5 QO(M, &) 2o ... =5 amL(M, £) 23" ker(So) —25 0. (5)
Therefore, for the resolvent R(Sp), we have G, = Q™ P(M,¢) and H?P(R(Sp)) =
= H™ P(V), where H?(V) = ker(V,)/Im(V,_,) are the cohomology space. Note that
So > 0 and therefore ker(So)} = ker(O) = ker(V,,). Let us choose an inner product
(-,-Yur in each space H?(R(So)).

The partition function of Sp with resolvent (5) can be written in the form [14, 16]:

2 (k) = W(k; R(So), (-, Ym, {-,)) = (,r/k)C(O,IOIW e En(0,0)

66



XT(M,X1 ('1')H)1/27 (6)

where |@] = VO? is defined via spectral theory. This is the basic formula one has to
evaluate.

It can be shown that the zeta function {(s, |O|) appearing in the partition function (6)
is well-defined and analytic for Re s > 0 and can be continued to a meromorphic function
on C, regular at s = 0. Furthermore, the zeta function can be expressed in terms of the
dimensions of the cohomology spaces of O. Since H?(R(Sp)) = H™?(V) (the Poincare
duality) for the resolvent (5), it follows that (see Refs. 14, 16] for details)

¢(0}|0]) = = (-1)PdimH?(R(S)) = (-1)™*! Z 1)PdimHP (V). (7)
p=0
The dependence -of the eta invariant 7(0|O) of Atiyah — Patodi - Singer [17—-19] on
the connection map QO can be expressed with the help of the formula for the index of
the twisted signature operator for a certain vectorbundle over M ® [0, 1]. Furthermore it
can be shown [17] that n(s|B) = 2n(s|O), where the B are elliptic self-adjoint maps on
M, £) defined on p-forms by

B, = (—i)*® (xV + (=1)PT1V4) . (8)

In this formula A(p) = (p + 1)(p + 2) + m + 1 and for the Hodge star-map we have used
*a A B = {a,B)yor. From the Hodge theory we have

dimkerB = ) dimH?(V).

p=0

Finally the quantity 7(M, X, (-,-)x) is related to the Ray - Singer (analytic) torsion
T2 (M). In fact, if H®(V) # 0 and HP(V) = 0 for p = 1, ..., m, then the product

(M, x, (")) = TS (M) - Vol(M)~4mH* (V) 9)

is metric independent [20], i.e. the metric dependence of the Ray - Singer torsion factors
out as V(M)~dimA’ (V)

The case of real compact hyperbolic manifolds. Let us consider the specific
case of a compact hyperbolic 3-manifolds of the form M = I'\H?. If the flat bundle, £ is
acyclic, then for analytic torsion one gets [21]:

dimM
T2 (X)) = R (0) = [ [detr,) 70772, (10)
p=0

where R, (s) is the Ruelle function and A, is the Laplacian restricted on p-forms and
the determinants are defined by means of zeta-regularization. The function R,(s) ex-
tends meromorphically to the entire complex plane C; it is an alternating product of
more complicate factors, each of which is a Selberg zeta function Z,(s;x). The Ru-
elle function associated with closed oriented hyperbolic 3-manifold I'\H® has the form
Ry (s) = Zo(s;x)Z2(2 + 5;x)/Z1(1 + 85 x). For the Ray — Singer torsion one gets [12]

(Lon( D) = R (0) = L2220 o (- TACNE) ) 1)
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where Vol(T'\H®) is the volume of a fundamental domain of I'\H®. In the presence of
non-vanishing Betti numbers b; = b;(T'\H?) we have [12, 22]

sy _ 0 =20 @17 Vol(T\HF)
[Tan(P\H )] e [bo!lzszl—bO)(l’X) € p( 3 )

(12)

Now we consider the contribution associated with eta invariant. A remarkable for-
mula relating 7(s, O) to the closed geodesics on I'\H?® has been obtained by Millson [23].
More explicitly, Millson has proved the following result for a Selberg type (Shintani) zeta
function Z (s, ©), which admits a meromorphic continuation to the entire complex plane.
Z(s, ) is a holomorphic function at s = 0 and

logZ (0, 0) = win(0,0). (13)

Furthermore, it is possible to show that Z (3,0) satisfies the functional equation
Z(3,0)Z(~s,0) = e2min(0.0),

Now we have all the ingredients for the evaluation of the partition function (6) in
terms of Ray — Singer torsion and a Selberg type function. The final result is

1/4
F ———} [Vol(T\G)] ™)/, (14

_ymseionz [ R, (0)
k) = () [2(3, 0)

where (0, Q) is given by Eq. (7).

Concluding remarks. We have derived the explicit formula for the semiclassical
approximation for the Chern — Simons partition function, using the invariant integration
method. The final formula are given in a form where the behaviour as k — oo is obvious.
In this connection we have explicitly exhibited the first term in the level k£ asymptotic
expansion for compact hyperbolic families of 3-manifolds.

The evaluation of the Ray — Singer torsion presented in this paper may be useful
within the Euclidean path-integral approach to 3-dimensional quantum gravity, where the
partition function is evaluated by summing contributions from all possible topologies [24].
For negative cosmological constant A, the classical extrema of the Euclidean action are
hyperbolic manifolds. It has been shown that 3-dimensional gravity can be rewritten as a
Chern - Simons theory for a suitable gauge group [25]. Therefore in the one-loop partition
function the quantum prefactor turns out to be dependent on the Ray — Singer torsion of a
hyperbolic manifold. Note that the dependence on the volume of the Ray — Singer torsion
is exponentially decreasing, making a contribution to the one-loop Euclidean partition
function of the same nature of the one corresponding to the classical action. Namely, the
one-loop Euclidean partition function, including only one extremum with A < 0 and in
absence of zero modes, reads (see also Ref. [12])

1/4
_ | Rx0) VOl(T\H8) [/ 1 1
Prue = [Z(Z‘), 0)] P [_ 4G (G|Al1/2 + 5)] o (15)

where the second term in the exponential is the first quantum correction.

Note that there is a class of compact sufficiently large hyperbolic manifolds which
admit arbitrarly large values of b;(M). In general, hyperbolic manifolds have not been
completely classified and therefore a systematic computation is not yet possible. However
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this is not the case for certain sufficiently large manifolds, the Haken manifolds [26).
There exists an algorithm for the enumeration of all Haken manifolds and there exists an
algorithm for recognizing homeomorphy of the Haken manifolds [27]. These manifolds
give an essentional contribution to the partition functions (14) and (15).

Finally, the explicit result (14) can be very important for investigating the relation

between quantum invariants for an oriented 3-manifold, defined with the help of a repre-
sentation theory of quantum groups [3, 4], and Witten’s invariant [1], which is, instead,
related to the path integral approach.
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