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It is shown that the next-to-leading order (NLO) corrections to the QCD Pomeron
intercept obtained from the Balitsky — Fadin — Kuraev - Lipatov (BFKL) equation, when
evaluated in non-Abelian physical renormalization schemes with Brodsky - Lepage -
Mackenzie(BLM) optimal scale setting, do not exhibit the serious problems encountered
in the M S-scheme. A striking feature of the NLO BFKL Pomeron intercept in the BLM
approach is that it yields an important approximate conformal invariance.

PACS: 12.38.Cy, 12.40.Nn

The discovery of rapidly increasing structure functions in deep inelastic scattering at
HERA at small-x is in agreement with the expectations of the QCD high-energy limit.
The Balitsky ~ Fadin ~ Kuraev - Lipatov (BFKL) [1] resummation of energy logarithms is
anticipated to be an important tool for exploring this limit. The highest eigenvalue, w™2%,
of the leading order BFKL equation [1] is related to the intercept of the Pomeron which
in turn governs the high-energy asymptotics of the cross sections: o ~ g@P~1 = gv™*"
The BFKL Pomeron intercept in LO turns out to be rather large: ap — 1 = wpP*? =
= 12 In2(as/7) ~ 0.55 for ag = 0.2; hence, it is very important to know the next-to-
leading order (NLQO) corrections.

Recently the NLO corrections to the BFKL resummation of energy logarithms were
calculated; see Refs. [2, 3] and references therein. The NLO corrections [2, 3] to the
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highest eigenvalue of the BFKL equation turn out to be negative and even larger than
the LO contribution for as > 0.157. However, one should stress that the NLO calcula-
tions, as any finite-order perturbative results, contain both renormalization scheme and
renormalization scale ambiguities. The NLO BFKL calculations [2, 3] were performed
by employing the modified minimal subtraction scheme (MS) to regulate the ultraviolet
divergences with arbitrary scale setting.

In this work we consider the NLO BFKL resummation of energy logarithms [2, 3]
in physical renormalization schemes in order to study the renormalization scheme de-
pendence. To resolve the renormalization scale ambiguity we utilize Brodsky-Lepage-
Mackenzie {(BLM) optimal scale setting [4]. We show that the reliability of QCD predic-
tions for the intercept of the BFKL Pomeron at NLO when evaluated using BLM scale
setting within non-Abelian physical schemes, such as the momentum space subtraction
(MOM) scheme [5] or the T-scheme based on T — ggg decay, is significantly improved
compared to the M'§-scheme result (2, 3].

We begin with the representation of the MS-result of NLO BFKL [2, 3] in physical
renormalization schemes. The eigenvalue of the NLO BFKL equation at transferred
momentum squared ¢ = 0 in the M S-scheme [2, 3] can be represented as the action of the
NLO BFKL kernel (averaged over azimuthal angle) on the leading order eigenfunctions

(@3/QD) 12+ [2):

2\ "ztw
oms(@n) = [ £ K@@ (&) T =

Q3
= Noxs () 23E) ———““S(Qﬂ , (1)

[1 + rar5(v) ~

where
xu(v) = (1) = $(1/2 + iv) - $(1/2 - iv)
is the function related with the leading order eigenvalue, ¥y = I''/T' denotes the Euler
1-function, the v-variable is conformal weight parameter [6], N¢ is the number of colors,
and @, 2 are the virtualities of the reggeized gluons.
The calculations of Refs. (2, 3] allow us to decompose the NLO coefficient r3;75 of Eq.
(1) into B-dependent and conformal (G-independent) parts:

rars(v) = oo (v) + 152 (v), (2)
where
) = -2 [%u(u) . g] (3
and
con, _ N¢ [ #?sinh(mv) Ne\ 1141227\
) = dxL(v) [2ucosh2(7ru) (3 + (1 + Ng) 16(1 + u2)) xe() +
2 _ 3
+ ) - - 60(0) + 490(1')] (@
with
_ cos(vIn(z)) | m In(l
e(v) 2/ dz A+2)s [— - le(w)] Lix(z) = / dt—————= (5)
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Here By = (11/3)Nc — (2/3)NF is the leading coefficient of the QCD S-function, Np
is the number of flavors, {(n) stands for the Riemann zeta-function, Liz(z) is the Euler
dilogarithm (Spence-function). In Eq. (4) Nr denotes flavor number of the Abelian
part of the gg — qg process contribution. The Abelian part is not associated with the
running of the coupling (7] and is consistent with the corresponding QED result for the
v*v* — ete™ cross section (8].

The (-dependent NLO coefficient r%_s(u), which is related to the running of the
coupling, receives contributions from the gluon reggeization diagrams, from the virtual
part of the one-gluon emission, from the real two-gluon emission, and from the non-
Abelian part (7] of the gg — qq process.

The NLO BFKL Pomeron intercept then reads for N¢ = 3 (2]

— —(O? — (O?
Q%S—lzwm(Q2,0):12 1n2a_M§7_r(g_)[1+rm(0)f&_ﬂ_(Q_)] : (6)
r375(0) = —~20.12 — 0.1020NF + 0.066920,, (M

r575(0) | Np=a ~ —19.99.

One of the most popular physical schemes is MOM-scheme [5], based on renorma-
lization of the triple-gluon vertex at some symmetric off-shell momentum. In order to
eliminate the dependence on gauge choice and other theoretical conventions inherent to
the MOM-scheme, one can consider renormalization schemes based on physical processes
[4], e.g., V-scheme based on heavy quark potential or T-scheme based on T — ggg decay
[9].

A finite renormalization due to the change of scheme can be accomplished by a trans-
formation of the QCD coupling [5]:

as — ag [1 + To—;r‘-g—], (8)

where T is some function of N¢, Ng, and for the MOM-scheme, of a gauge parameter &.
Then the NLO BFKL eigenvalue in the MOM-scheme can be represented as follows

amom(Q?) [1
T

Nexi(v)

"'MOM(V) = Tﬁg(l/)-i-TMoM.

wmom(@*,v)

) aMOM(Qz)]

: ©)

+ rMOM

The corresponding T-function for the transition from the M S-scheme to the MOM-, V-
and Y- schemes can be found from Refs. [5, 4, 9] (Table 1).

Table 1

Scheme-transition function and the NLO BFKL coefficient in physical schemes

Scheme T=T"F 4T r(0) = reon¥(0) + rP(0) r(0)
- (Np =4)
MOM | £=0 | 7.471—1.2818; | —12.64 — 0.1020NFr — 1.2148, | -22.76
£=1 | 8.247 — 1.2818p —11.87 - 0.1020NF — 1.21489 -21.99
§=31] 8.790 —1.2818, ~11.33 — 0.1020NF — 1.2145¢ -21.44
\'J 2 —0.416780 —18.12 —~ 0.1020NF — 0.34978p -21.44
T 6.47 — 0.9238¢ —13.6 — 0.102Nyr — 0.8560¢ -21.7
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One can see from Table 1 that in spite of a weak renormalization scheme dependence
the problem of a large NLO BFKL coefficient remains. The large size of the perturbative
corrections leads to significant renormalization scale ambiguity. The renormalization
scale ambiguity problem can be resolved if one can optimize the choice of scales and
renormalization schemes according to some sensible criteria. In the BLM optimal scale
setting (4], the renormalization scales are chosen such that all vacuum polarization effects
from the QCD G-function are resummed into the running couplings.

In the present case one can show that within the V-scheme (or the M S-scheme) the
BLM procedure does not change significantly the value of the NLO coefficient r(~). This
can be understood since the V-scheme, as well as M S-scheme, are adjusted primarily to
the case when in the leading order there are dominant QED (Abelian) type contributions,
whereas in the BFKL case there are important leading order gluon-gluon (non-Abelian)
interactions. Thus one can choose for the BFKL case the MOM-scheme [5] or the Y-
scheme.

Adopting BLM scale setting, the NLO BFKL eigenvalue in the MOM-scheme is

a MOM2 a MOM 2
SHOM Q) = Noxu () 220 Qsir ) [1 oo (u)—@ﬂ%’"——’] . (a0)
rEEM (¥) = 13ioh () - (11)

The B-dependent part of the rpron(v) defines the corresponding BLM optimal scale

B8
QYO 2(v) = Q*exp [-ém%;”—(y—)] =Q%exp [‘;‘XL(V) - g + 2(1 + %I)], (12)

where I = 2 fj dzln(z)/[z? — o + 1] ~ 2.3439. At v = 0 we have Q¥ZS¥%(0) =
= Q*(4exp[2(1 + 21/3) — 5/3]) ~ Q* 127.

Fig.1, 2 and Table 2 give the results for the eigenvalue of the NLO BFKL ker-
nel. We have used the QCD parameter A = 0.1 GeV which corresponds to as =
= 4n/[Bo In(Q?/A?)] ~ 0.2 at Q* = 15 GeV?.

One of the striking features of this analysis is that the NLO value for the intercept
of the BFKL Pomeron, improved by the BLM procedure, has a very weak dependence
on the gluon virtuality @2. The minor Q?-dependence obtained leads to approximate
scale and conformal invariance. Thus one may use conformal symmetry [6, 10] for the
continuation of the present results to the case t # 0.

Table 2

The NLO BFKL Pomeron intercept in the BLM scale setting within non-Abelian physical
schemes

Scheme rBrMm(0) " oBIM 1 = wpram(QF,0)
(Np=4) [QT=1GeV2 [ GT=15 GeV? | Q7 = 100 GaV*
MOM | £€=0 -13.05 0.134 0.155 0.157
E=1 -12.28 0.152 0.167 0.166
£€=3 -11.74 0.165 0.175 : 0.173
T -14.01 0.133 0.146 0.146

Note that the application of fast apparent convergence [11] and the principle of mi-
nimal sensitivity [12] to the NLO BFKL eigenvalue problem lead to difficulties with the
conformal weight dependence, an essential ingredient of BFKL calculations [13].
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Fig.1. v-dependence of the NLO BFKL eigen- Fig.2. Q2-dependence of the BFKL Pomeron in-
value: BLM (in MOM-scheme) — solid, MOM- tercept in the NLO. The notation is as in Fig.1
scheme (Yennie gauge: £ = 3) — dashed, MS-

scheme — dotted. LO BFKL (as = 0.2) - dash-

dotted

It is worth noting also that since the BFKL equation can be interpreted as the “quan-
tization” of a renormalization group equation [10] the effective scale should depend on the
BFKL eigenvalue w, associated with the Lorentz spin, rather than on v. This issue and
other recent approaches to the NLO BFKL [14] will be discussed in more detail in the
extended version of this work [13].

To conclude, we have shown that the NLO corrections to_the BFKL equation for the
QCD Pomeron become controllable and meaningful provided one uses physical renor-
malization scales and schemes relevant to non-Abelian gauge theory. BLM optimal scale
setting sets the appropriate physical renormalization scale by absorbing the non-conformal
B-dependent coeflicients. The strong renormalization scale dependence of the NLO cor-
rections to BFKL resummation then largely disappears. A striking feature of the NLO
BFKL Pomeron intercept in the BLM approach is its very weak Q2-dependence, which
provides approximate conformal invariance.
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