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THE RUNNING BFKL: RESOLUTION OF CALDWELL’S PUZZLE
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The HERA data on the proton structure function, Fa(z,Q?), at very small = and
Q? show the dramatic departure of the logarithmic slope, 8F2/dlog Q2, from theoreti-
cal predictions based on the DGLAP evolution. We show that the running BFKL ap-
proach provides the quantitative explanation for the observed z and/or Q? -dependence
of 8F;/81og Q2.

PACS: 12.38.-t, 13.60.Hb

~ Qaldwell’s presentation of the HERA data in terms of the logarithmic derivative
OF;/8log Q? for the proton structure function (SF) Fy(z, @?) exhibits the turn-over of the
slope towards small z and/or @? up to currently attainable z ~ 10~% and Q% ~ 0.1 GeV?
(1, 2]. The DGLAP-evolution [3] with GRV input [4] predicts a steady increase of the
derivative

HFRGLAP

W x as(Qz)GDGLAP($1Q2) : (1)

with 1/x, due to the growth of the -gluon structure function GPCLAP(z Q?) =
= xgPOLAP (2 (?). A slight systematic discrepancy of the DGLAP analysis with small-z
data on 8F,/8log Q? was found also in [5).

The turn-over point located at £ ~ 5-1074 and Q% ~ 5GeV?, in a commonly believed
legitimate pQCD domain. So, the phenomenon occurs on the interface between ”saft”
and "hard” physics. Its explanation within the color dipole approach is based on two
observations?:

i) specific smallness of the log @%-derivative of sub-leading terms of the BFKL-Regge
expansion for F, at the turn-over point, which is due to the nodal structure of the runnmg
BFKL eigen-SF’s;

ii) significant contribution to the small-Q* proton SF coming from the non-perturbative
component of the BFKL pomeron. :

The s-channel approach to the BFKL equation [7) was developed in terms of the color
dipole cross section a(z,7) [8, 9] (herea.fter r is the color dipole moment). The positive
feature of the color dipole picture, to be referred to as the running BFKL approach,
is consistent incorporating the two crucial properties of QCD: i) asymptotic freedom
(AF), i.e., the running QCD coupling ag(r) and, ii) the finite propagation radius R, of
perturbative gluons.
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3) The preliminary results have been reported at the DIS’98 Workshop (6]
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The BFKL equation for the interaction cross section o(z,r) of the color dipole r with
the target reads ‘

do(z,7) B
Blogi1/z) O )
3 [, 2 , ’
= 8nd /d p1l&(py) — E(p2)*o(z, p1) + o(z,p2) — o(z,7)] . (2)

Here the kernel X is related to the wave function squared of the color-singlet ggg state
with the Weizsidcker - Williams (WW) soft gluon. The quantity

E(p) = —9s(p)V  Kolucp) = gs(p)nc Ki(ucplp/p, (3)

where R. = 1/ug and K, (z) is the modified Bessel function, describes a Yukawa screened
transverse chromoelectric field of the relativistic quark and |€(p,) — £(p,)|? describes the
flux (the modulus of the Poynting vector) of WW gluons in the ¢gg state in which » is
the g-q separation and p, 2 are the g-g and g-g separations in the two-dimensional impact
parameter plane, Our numerical results are for the Yukawa screening radius R, = 0.27 fm.
The recent fits to the lattice QCD data on the field strength correlators suggest similar
R, [10]. :

The asymptotic freedom of QCD uniquely prescribes the chromoelectric field be com-
puted with the running QCD charge gs(r) = y/4mas(r) taken at the shortest relevant
distance, R; = min{r, p;} in the ¢gg system. Although, the sointroduced running coupling
does not necessarily exhaust all NLO effects, it correctly describes the crucial enhance-
ment of long distance, and suppression of short distance, effects by AF.

The properties of the running color dipole BFKL equation responsible for the observed

. @? dependence of OF; /D log Q? are as follows [11, 12]. The spectrum of the running BFKL

equation is a series of moving poles in the complex j-plane with eigen-functions

on(z,7) = on(r) exp [An log(1/2)] @

being a solution of
KQ®op, = Anou(r). (5)

The leading eigen-function oq(r) is node free. The sub-leading o,,(r) has n nodes. The
intercepts A,, closely, to better than 10%, follow the law A, = Aq/(n + 1) suggested
earlier by Lipatov [13]. The intercept of the leading pole trajectory, with the above
specific choice of R, is Ag = A = 0.4. The sub-leading eigen-functions o, [11, 12] are
very close to Lipatov’s quasi-classical solutions [13] for n >> 1. For our specific choice of
the infrared regulator, R., the node of o1(r) is located at 7 = r; ~ 0.05 — 0.06 fm, for
larger n the first node moves to a somewhat larger r ~ 0.1 fm. k

The color dipole factorization [14] in conjunction with the explicit. form of the ¢g light-
cone wave function, ¥,.(2,7), relates the dipole cross sections o, (r) with the eigen-SF,

f2(@%),
w > / dz/d%mn (2,7 Pon(r), (6)

q—udcs

The BFKL Regge expansmn

f'n(QZ) =

o(@,7) = 00(r) (@ /)2 + 01 ()(z0/2)* + a2(r) (20 /2)* + ., )
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gives the BFKL Regge expansion for the SF
F(2,Q%) = ¥ £a(Q%)(z0/2)?" . (®)

The remarkable finding of [15, 11, 12] is a good description of the HERA data on the
proton SF starting with the Born two-gluon cross section og(r) as a boundary condition
for the running BFKL equation (2) at z¢ = 0.03. With such a boundary condition, which
could well be excessively restrictive, the expansion (7) fixes uniquely the normalization .
of the eigen-FS’s.

The Bjorken variable z = Q?/ 2mpu is commonly bemg used for the presentatlon of the
experimental data even at Q2 > m?2 5» way beyond the kinematical region Q%> m it has
originally been devised for. At small @2, the relevant Regge parameter is 2m,v/ (Q2 +m2)
rather than the 1/z. Consequently, in the small-Q? region the Regge parameter zo/z in
eqs.(7) and (8) must be substituted by (zo/z)(1 + m2/Q?).

One more remark on kinematics is in order. The BFKL Regge expansion (8) holds at
small z < 1072, In order to model the sea contribution at larger z we multiply (8) by the
familiar factor (1 — =)™, with m = 5. This factor does not affect the diffraction region
but strongly suppresses production of gluons with z 2 0.1.

In applications it is convenient to work with f,(Q?) represented in an analytical form.
For the leading singularity we have

2
(@) = oo 8 [1-+ calog1 + QY] (9

which has the large-Q? asymptotics [16, 9]

4
$o(@) o< [0 @7, 0= 35 (10)
For n > 1 the functions f,(Q?) can be approximated by
1+ R2Q* "Iy
fn(Qz")“‘ nfO(Q )1 i R2Q2 H ( (,)) (11)
where »
' z=[1+cnlog(l+ rin)]% -1, Yn = Y00n (12)

and nmae = min{n, 2}.

Since the relevant variable is a power of the inverse gauge coupling the nodes of
Fna(Q?) are spaced by 2-3 orders of magnitude in Q®-scale and only the first two of
them are in the accessible range of Q% [11, 12]. The first nodes of sub-leading f,(Q?)
are located at Q2 ~ 20 — 60GeV?, the second nodes of f»(Q2?) and f3(Q?) are at
Q? ~ 5-10°GeV? and Q? ~ 2-10* GeV?, respectively. The parameterization tuned to
reproduce the numerical results for f,(Q?%) at Q% < 10°GeV? is given by eq.(11). For
n = 3 we take a simplified form with only two first nodes, because the third node of
f3(@?) is at ~ 2107 GeV?, way beyond the reach of accelerator experiments at small
z. The found parameters are listed in the Table.
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n | an Cn r2,Gev=2 | R2, GeV~? zs,lj z,(.z) én An
0 0.0232 | 0.3261 | 1.1204 2.6018 0.40
1 0.279 0.1113 | 0.8755 3.4648 2.4773 1.0915 | 0.220
2 0.195 0.0833 | 1.5682 3.4824 1.7706 | 12.991 1.2450 | 0.148
3 0.471 0.0653 | 3.9567 2.7756 1.4963 | 6.9160 1.2284 | 0.111

Asymptotically, at 1/ — oo, the expansion (8) is dominated by the term
fo(Q%)(xo/z)2°. At moderately small z the sub-leading terms are equally important
since A, ~ 1/n. However, as it has been pointed out in [11, 12}, for Q* < 10?2 GeV? all
fn(Q?) with n > 3 are very close in shape to each other. Then we arrive at the truncated
expansion

3
Fa(2,Q%) = Y fu(@)(zo/2)" + F3MH(Q%) + F3*(2,Q7), (13)
n=0
where the term f3(Q?)(zo/z)2* with the properly adjusted weight factor, az, stands
for all terms with n > 3. The addition of this “background” term in eq.(13) improves
significantly the agreement with data for large Q? thus expanding the applicability region
of eq.(13) over the whole small-z kinematical domain of HERA.

The need for a soft pomeron contribution Fy °/* in addition to the perturbative BFKL
SF’s described previously is brought about by phenomenological considerations. A viable
BFKL phenomenology of the rising component of the proton structure function over the
whole range of Q? studied at HERA (real photo-absorption included) is obtained if one
starts with the Born dipole cross section op(r) as a boundary condition for the BFKL
evolution at zo = 0.03 [17, 12]. However, such a purely perturbative input, op(r), with
R. = 0.27fm strongly underestimates the cross sections of soft processes and the proton
SF at moderate Q® ~ 1GeVZ. Therefore, at 7 > R,, the above described perturbative
BFKL dipole cross section op(z,r), must be complemented by the contribution from
the non-perturbative soft pomeron, oppe(z,7). In terms of the relationship [17] between
o(z,r) and the gluon structure function of the proton, G(z, Q?), the non-perturbative di-
pole cross section opp:(r) at r > R, must be associated with soft non-perturbative gluons
in the conventional G(z,Q?). The contribution to G(z,Q?) from the non-perturbative
transverse momenta k? < QF ~ m2 persists at all Q% and must not be subjected to the
DGLAP evolution.

Because the BFKL rise of a(z, ) is due to production of s-channel perturbative gluons,
which does not contribute to oppe(r) in [17, 12] we argued that to a first approximation
one must consider the energy independent oy (r) and additivity of scattering amplitudes
from both the hard BFKL and soft non-perturbative mechanisms. For recent suggestions
to identify our o,p¢(r) with the soft pomeron of the two-pomeron picture see [18, 19].
In the models of soft scattering via polarization of the non-perturbative QCD vacuum
[20, 21], gppe(r) is interpreted in terms of the non-perturbative gluon distributions.

To our opinion, the recently encountered troubles with the small-Q? extrapolations of
DGLAP evolution [5] and the failure of DGLAP fits in the Caldwell plot [1, 2] are due to
illegitimate enforcing the DGLAP evolution upon the non-perturbative glue. :

The non-perturbative term Fy°'*(Q?) in eq.(13) calculated from eq.(6 ) with o =
Onpt(r) from [22] can be parameterized as follows
R2Q2

FTQ@) = by g [+ clos(1 477 Q7] 14
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where b = 0.1077, ¢ = 0.0673, R?> = 6.6447GeV~2 and r? = 7.0332GeV~2. So, its
log Q2-derivative levels off at very small Q% ~ 0.15 GeV? and does not contribute to the
observed growth of 8F;/8log Q.
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Fig-1. Caldwell’s plot of 8F;/8log Q2 for the ZEUS data [2] (a) and fixed target data [1] (b). Our
predictions (BFKL Regge) are shown by the solid lines. Shown by the dashed lines is the leading BFKL
pole approximation (LPA)

In Fig.1 we confront our estimates to both the HERA data and the fixed target data.
In [2] the logarithmic slope, 8F2/8log Q?, is derived from data by fitting F» = a+blog Q?
in bins of fixed z. The average value of @2, (Q?), in each z-bin is derived from the F,
weighted mean value of log @? in that bin.

As we have noticed above, at moderately small z ~ 1072 — 1073 the contnbutlon of
the sub-leading poles to Fy(z, @?) is still substantial (the relative weight factors, a,, with
n > 1 are presented in the table), but toward the region of £ ~ 10~° the leading pole
contribution starts to prevail. At small Q2 the ratio of log @2-derivatives, r, = f./fé, -
can be estimated as '

A2 (= Ao—An
Ty = anr%‘ (’m—o) v (15)
where
Ai ~ 1/(R$‘ - Cg"{o‘l‘g) y - (16)

Because the sub-leading SF's, f.(Q?), have node at Q% ~ 20 — 60GeV? [11, 12],
their contribution to the slope 8F»/8logQ? vanishes at Q% ~ 5 — 10GeVZ, which is
very close to the turn-over point in the HERA data. Hence 8F;/dlog@? at small Q?
follows closely 8fo/0log Q. From (9) it follows that at small Q2, fo(Q?) behaves like
~ Q?/(A% + Q?) with A2 ~ 0.72 GeV? coming from (16). Therefore, 8F2/8log Q? rises
with Q% up to Q% ~ 1GeV? then levels off. Only at large Q?, when the sub-leading
terms enter the game, 0F,/8log Q? decreases and even becomes negative valued at large
z. Our estimates shown in Fig.la are in good agreément with HERA data {2]. The
curves are somewhat wxgg]y because the z — {Q?) correlation of the experlmental data is
non-monotonous one.

In Fig.1b we compare our predictions with the fixed target data [1]. Variation of the
slope in this case is less pronounced since the starting value of (QZ) is (Q?) ~ 0.54 GeV?
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Fig.2. Description of the H1, ZEUS and E665 F2(z,Q?) data by the BFKL Regge expansion (13): a -
the large-Q? data (Q? =3.5, 12, 25, 65, 120 and 200 GeV?); b ~ the small-Q? data (Q2 =0.11, 0.20, 0.40,
0.65, 0.85 and 1.2 GeV?). For display purposes we have multiplied F> by the numbers shown in brackets

»

at ¢ ~ 1073 (compare with Q% = 0.12GeV? at z = 2.1- 1075 at HERA). It can easily
be seen that the derivative 8fo/01log Q? at such Q? is a rather slow function of Q2. The
agreement of our estimates with the fixed target data is quite reasonable, though there is

a systematic discrepancy at small z. We recall that there is a certain mismatch between
the £665 and H1/ZEUS data on F(z, Q?) in the close (z,Q?) bins (see Fig.2a and b).
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