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We calculate the amplitude of magnetization oscillations for quasi-two-dimensional
electron system. In two-dimensional case the behavior of this amplitude as a function of
magnetic field and temperature differ completely from the conventional Lifshitz-Kosevich
formula valid for 3-dimensional metals. Before only ideal two-dimensional case has been
considered, and the difference of the shape of Fermi surface from cylindrical one has not
been taken into account. We obtain the general formula for the envelope of magnetization
oscillations as a function of magnetic field, temperature and the strength of the warping of
Fermi surface. This problem is important because of the aroused in recent years a great
interest to heterostructures and quasi-2D organic metals.

PACS: 72.15.-v

1. Introduction. The de Haas - van Alphen (dHvA) effect is very important for in-
vestigating the properties of metals, since it gives the information about Fermi surface and
cyclotron mass of electrons in these compounds. This effect has been suggested in 1930
by L.D.Landau [1] and has been first measured by de Haas and van Alphen in the same
year [2]. The calculation of magnetization as a function of magnetic field and temperature
for arbitrary electronic spectrum in 3-dimensional metals has been carried out in 1955 by
Lifshitz and Kosevich [3]. These authors assume the chemical potential to be constant,
that is a very good approximation in 3-dimensional case but not valid for two dimensions.
This difference takes place because in three dimensions the spectrum of electrons is con-
tinuous {due to z-component of momentum) and the Fermi surface is intersected by many
Landau levels(LLs). Therefore the chemical potential is approximately equal to the Fermi
energy and does not oscillate with changing of the magnetic field. In 2-dimensional(2D)
system the electron spectrum has gaps(between LLs) and the chemical potential (which
is the minimal energy of a particle to be added to the system) is pinned to the highest
occupied Landau level(LL). When this LL becomes completely filled, chemical potential
jumps to the next LL. Such a jump has been detected by the magnetization measurement
in several single-layer, high-mobility 2D electron gas AlGaAs-GaAs heterostructures [4].
So, the chemical potential in two dimgnsions oscillates strongly with varying of magnetic
field and must not be considered as a constant. This fact changes the amplitude and the
form of magnetization oscillations completely.

On the experiment the significant departure from the conventional Lifshitz-Kosevich
formula [3] has been observed in the number of the charge-transfer salts based on the mole-
cule bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) [5 - 7] and on the heterostructures
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[4]. The theoretical study of dHvA oscillations in ideal 2D case (with cylindrical Fermi-
surface and without Landau level broadening) has been performed by Vagner et al.[8] in
order to explain dHvA measurements made on 2D GaAs/Al,Ga;_As heterojunctions
and graphite intercalation compounds. Analytical study of 2D dHvA effect with broad-
ened Landau levels(LL) for zero temperature (T' = 0)[9] and- quite thorough numerical
calculations[10] for a wide temperature region have been made, but in these papers the
influence of warping of the Fermi-surface on the magnetization oscillations is disregarded.
This approximation is correct only if the size of warping is much smaller than LL broad-
ening and temperature. In this paper we consider the inverse case when this warping
energy W is bigger than scattering broadening of LLs, but less (not much less!) than the
distance between LLs. The analytical formula for the amplitude of magnetization oscilla-
tions is derived for arbitrary ratio of W/2kT. In the magnetic field, warping energy and
temperature dependence of the amplitude of dHvA effect the information about warping
of Fermi-surface and the effective mass is contained, so our formula will be very useful
for obtaining these parameters from the experiment for many quasi-2D compounds.

2. Chemical potential. In order to calculate magnetization we need first to obtain
the expression for chemical potential u(B). Let us write the number of particles as a sum
over all LL with Fermi distribution function fn:

MZ / fadps | 1)

where g is the degeneracy of a LL, a is the lattice constant in z direction (the 2D layer sep--
aration in heterostructures) and N - is the number of particles in one layer. The chemical

potential is situated between the two LLs with energies hwc(nr — }) and hwe(nr + )

where w, = eB/m*c — is the cyclotron frequency. Since we assume hw, > kT, only these

two Landau levels make contribution to.thermodynamics. So, we can set f, = 1 for all

n<np—1and f, =0foralln > npg:

Zvrh

= Vgt L5 [ (st fop)ips (@)

. ,
The energy of electron is given by F = hw.(n+ 1)+ E. , where n is the number of LL and
the term E, = (W/2)(1 — cos(p,a/k) ) gives the dependence of energy on the momentum
~ along z-axis. For ideal 2D case W = 0, and W # 0 takes into account the warpmg of
Fermi surface. Later for convenience we shall use another expression for E,

E, = (W/2) cos (p.a/h). (3)

The difference between expression (3) and the previous one consists of only shifting the
starting point of energy by a constant W/2 (which of course does not change any physical
result) and the shifting of starting point of quasi-momentum p, by n#i/a (that makes no
difference because of subsequent integration over the full period of p,). Substituting the
expression for f, = 1/[1 + exp(E — p/kT) ] into eq. (2) we get

——(nF-1) = f i ay + :
g nE 2n o 1+ exp(Xr — a)exp{(W/2kT) cosy] ;

+—1— / 2" dy 4)
27 Jo 1+ exp(Xr + a)exp[(W/2kT)cosy] ’
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where y = p,a/h, Xp = (hweng — p)/kT , and a = fw./2kT. In order to calculate the
integral we will use the condition

exp(—a+W/2%T + X5) < 1 (5)

which as will be shown later even for W ~ Fw is equivalent to y/a > 1 and is usually
fulfilled in the experiments. So, one can make an expansion of (4) over small parameter
(5) keeping only first two terms: .

: I w -W
% —(np-1) = —21; 1—eXra exp(%T cosy) e XF % exp(——r ST cosy)ldy =
a w
= 1-e ®-2sinhXp- IO(ZkT) (6)

where Io(W/2kT) is the modified Bessel function of argument W/2kT. Now we have
Nfg—np=n=-e% 2sinh Xp I (W/2kT). {7

Later we shall use the notation 2 = N/g — np . Equation (7) can be easily solved with
respect to chemical potential:

a

sinh Xp = — ne pu = hweng + kTarsh (—ne—) . (8)

— =
2Uo(7) 200 (357)

Let us see the limiting cases of the obtained expression for u. For this purpose we need
the asymptotic behavior of modified Bessel function:

2

Io(z) = 1+%+~-- Lz 1 9)
In(z) = explz):v1/2nz, 2> 1. (10)

For W/2kT « 1, formula (8) coincides with the expréssion for chemical potential without
warping of Fermi surface [8] u = fw.ng —kT In[(—7 cosh a+v/1 + @2 sinh? a) /(1+7)]. To
show this we’ll simplify this expression using fie® > 1: p ~ fw.np —kT in (ie® /(1 - 7)) .
Taking into account identity arshz = In(z + v/1 + %) and inequality 7ie® 3> 1 we can
rewrite formula (8) in the form p = Awcnp — kT In(ie®). So, in the limit # < 1/+/a these
formulaes coincide. ‘

3. Thermodynamic potential and magnetization For calculating the thermody-
namic potential we’ll use its definition:

217& oo

= —kT%ﬁ/ Zln (1 + exp [” fT(”’)D dp.. (’11)

The calculation of sum and integral is analogues to made up for chemical potential.
Making the expansion over the same small parameter exp(—a + W/2kT + Xp) < 1
and separating the contribution from the last two LL we get:

HF‘Z

1 gkT W
1= pASNB - _pXFr—a
g ,.Ezo (hwe(n + 2) w+ o / [(XF a+ kT cosy)—eXF %

‘ w kT [**] _ -w
X exp(ﬁ cos y)] dy + %ﬂ— / [—e Xr— exp(ﬁ cos y)] dy.
0
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After taking the integrals and sum we obtain finely
Q = g[(n%/2)hw, — unp] ~ gkTe™ - 2cosh X - Iy (W/2kT). (12)

It is easy to check that in the limit W/2kT < 1 and ## < 1 this formula coincides with the
expression for thermodynamic potential in the 2D case of ideally cylindric Fermi surface

8]

0= g[ g ﬁwc—unp-+-%ﬁwc—len(2costh+2cosha)}

(for proving this one should use cosh Xp =~ || e® /2Iy(W/2kT) « cosha) . Free energy

2
F=Q+uN=g niﬁwc+ E—np u—kTe ™-2coshXp-Iy W . (13)
2 g 2kT

Now we can calculate the magnetization

- OF_ _OF e OFS 0Fu ”
6B dw. m*c B89 &, Oup OB
(where S— is the area of the sample and &p— is the magnetic lux quantum). Now one
only has to take this derivative accurately. '

Since ghe/m*c = fw.S/®o we get

ol
M = soﬁw { TLFTL+ 2Farsh (m) e_°‘ I (2I;CVT) COShXF (—1"‘%)}
(15)
This is the expression for magnetization with warping of Fermi surface. The only re-
striction on the magnitude W of the warping is that it must be not greater than energy
difference between LLs. )
Formula (15) is valid only in the narrow region

it < Io (W/2kT) e W/2T ~ min{ KT /=W, 1} , (16)

where the condition (5): exp(—a+W/2kT+XF) ~ 7e"/?¥T /I, (W/2kT) < 1is satisfied.
What we are interesting in is the envelope of magnetization oscillations, i.e. the amplitude
of these oscillations as a function of magnetic field, temperature and the size of warping,
because on the experiment only this amplitude is detected. To calculate this amplitude
one need only the values of maxima and minima of magnetization oscillations. So if these
extrema of magnetization get into these narrow regions of 7 or B, then we can use formula
(15) to calculate the envelope. As will be shown later, these extrema of M (B) occur at
fi ~ 1/2¢, so that the condition (16) is usually satisfied (this restriction for W ~ fw, is
equivalent to /a > 1).
Let us turn to the calculating of the envelope of M(B). Since [sinh Xp|

= |-ne*/2Lo(W/2kT)| > 1, then cosh Xr ~ |sinh XF| = |fi|e*/2Io(W/2kT), and the
expression for magnetization (15) can be replaced by

SEr 1 1 e

M=—-n(1+— h| ——— 17
%, { AL+ 20) + gga <2IO(W/2kT))} (17)

where Er = Fwcnp — is the Fermi energy of electrons without magnetic field. In order to

find the amplitude of magnetization oscillations one has to differentiate (17) with respect
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to B. Taking into account that np(B) = const for each interval of B where the extrema
occur, one get: :

OM  hw.gnp 3 np1 } . 1 nfp
Pl Y- A — -~ =0 = =+
3B B B { F+ Nez

——F 18
2 2a|n| 2anp + 3/2 (18)

The values B, of magnetic field at which magnetization M has extrema are given by

. 1
Be;l: = B (1 + W) . (19)

To obtain the envelope of magnetization one should substitute extremal values of i,
into (17) :

SEFr e® nr 1 np+1 }
-, 20
T 2%, { a2rsh (4an(W/2kT) nF +3/2) anp+3/2 (20)

All above calculations have been made for spinless electrons. For generalizing them
“one should substitute all fw, in the resulting formula by the real distances between energy
levels, that takes into account the spin splitting. These distances will depend periodically
on the magnetic field,; and this period in the energy scale is equal to LL separation. If
spin-orbit interaction is weak compared to the cyclotron energy, the spin up states add
one level between each two LL with spin down no matter what is the ratio of spin splitting
energy to the distance between LLs (we assume that g-factor of electrons does not depend
on the magnetic field). In the special cases, when the spin splitting energy is just n-times
the distance between LLs (with the precision of the temperature or the LL broadening),
the formula (20) acquires only the factor 2, because the effect of spin to magnetization
oscillations in this case is only to increase the degeneracy of the LLs two times. Since
temperature and LL broadening are not very small usually, such a situation is not rare.
The envelope for magnetization oscillations in this case becomes:

S 2 e ng 1 np+1
M rsh _lrnptl |
+ == { ar (4an(W/2kT) nF+3/2) anp+3/2} (21)

In the limit W/2kT <« 1 and' ng > 1 this formula coincides with previous one,
obtained for the ideal two-dimensional case [8]

-SEr 1
=47 1= -
| My = %, [1 In(2a) a] (22)
which is valid when the number np of filled LL is large.
In the inverse case of large warping formula (20) becomes:
) My=258E ) W L (VWY 1) (23)
&, hw, « hw, a

This formula differs substantially from the ideally-2D one (eq. (22)). The amplitude of
the oscillations depends approximately linearly on the size of warping W.

4. Discussion. The obtained formula (eq. (20)) differs drastically from the 3D
Lifshitz — Kosevich behavior. Instead of exponential dependence on temperature in 3D
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case: M ~ exp (—27r2Tcm‘ JeRH ) the amplitude of magnetization oscillations has rather
logarifmic dependence (eq. (23)). The form of the oscillations in two dimensions is also
unsimilar to the 3D case. Instead of smooth nearly sinusoidal oscillations, where one can
rest only few first harmonics in Lifshitz — Kosevich formula, in 2D case we have saw-
tooth form. The maxima and minima of magnetization are separated by (see eq. (18))
Af = np/a(np + 3/2), so the jumps are very sharp if & > 1, i.e. if temperature and
LL broadening are much less than cyclotron energy. This result has an experimental
confirmation[4]. So, considering only few first harmonics of the magnetization oscillations
becomes bad approximation for obtaining the effective electron masses and other para-
meters of 2D compounds. Therefore using of the conventional Lifshitz-Kosevich formula
for processing the experimental data for quasi-2D materials may lead to incorrect results.

For many BEDT-TTF salts, the effective mass m* determined from the dHvA and
Shubnikov — de Haas effects is found to be larger than the band mass m;. This difference
has been attributed to mass enhancement due to many-body renormalization [11]. Single--
ton et al.[12] have reported cyclotron resonance measurements indicating a cyclotron mass
mc g 'smaller by a factor of 5 than m* on the closed orbit in the KHg(SCN),4 salt. They
.concluded that the transport mass is enhanced mainly by electron-electron interactions,
whereas mepg is independent of this short-range interactions, and the electron-phonon
interactions may play only a minor role in the mass enhancement. Although the carrier
on the relevant open orbit is thought to be also strongly correlated, direct evidence has
not been obtained yet[13]. In this context it would be interesting to obtain the effective
mass of these quasi-2D compounds from dHvA effect using our formula(20).
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