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Applying Hamiltonian averaging and quasi-identical-like transformation we demon-
strate that the averaged dynamics of high-frequency nonlinear wave in systems with pe-
riodically varying dispersion can be described in a particular limit by the integrable
nonlinear Schrédinger equation.
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Propagation of high-frequency large amplitude wave in media with varying dispersion
is a rather general nonlinear problem with a wide area of physical applications like, for in-
stance, optical pulse transmission in dispersion-managed fiber lines [1], a stretched pulse
generation in mode-locking fiber laser systems (2], propagation of high intensities beams
in second order nonlinear media with periodic poling, evolution of soliton in a periodi-
cally modulated nonlinear waveguide and other applications. Optical pulse transmission
in fiber is one of the most bright demonstration of practical application of the fundamental
soliton theory. The traditional path-averaged optical soliton preserves its cosh-type shape
during propagation by compensating in average the fiber dispersion through nonlinearity.
This is possible because the pulse power oscillations {due to periodic amplification of
the pulse to compensate for the fiber loss) are very fast. Rapid oscillations of the power
can be averaged out and, as a result, the slow pulse dynamics in the traditional soliton-
based transmission lines, is governed by the integrable [3] nonlinear Schrédinger equation
(NLSE). Interability of the NLSE makes possible to apply well-developed powerful math-
ematical method of the inverse scattering transform [3] to a variety of practical problems
(see e.g. [4-7T) and references therein). Experimental (and even first commercial [8])
realizations of the multichannel soliton transmission have stimulated further research in
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soliton theory. In this paper we apply Hamiltonian averaging and quasi-identical trans-
formation to demonstrate that the averaged dynamics of high-frequency nonlinear wave
in systems with periodically varying dispersion can be described in some particular limits
by the integrable NLSE. As a specific physical and practical application, in the present
paper we focus on dispersion-managed soliton transmission. The dispersion-managed
(DM) periodic, breathing, soliton-like pulse that stably propagates in fiber system with
large variations of the dispersion differs substantially from the fundamental (NLSE) soli-
ton [9-29). There are two scales in the DM pulse propagation: the first (fast dynamics)
corresponds to rapid oscillations of the pulse width and power due periodic variations of
the dispersion and periodic amplification; and the second (slow dynamics) occurs due to
the combined effects of nonlinearity, residual dispersion and averaged effects. Traditional
soliton solution of the NLSE with uniform dispersion and without loss realizes continuous
balance between nonlinearity and dispersion. Losses and variations of dispersion make
impossible in general case to support such balance continuously. Nevertheless, a balance
between nonlinear effects and dispersion can be achieved in average over the compensation
period. As a result, slow dynamics of the DM soliton can be described by the propagation
equation averaged over fast oscillations [1,12]. The DM pulse dynamics typically depends
on many system parameters and is rather complicated. Different theoretical approaches
have already been developed to describe properties of DM soliton: variational approach
[12-20] or more advanced root-mean-square momentum method (1, 21], multiscale analy-
sis [22— 24] methods using averaging 12,26, 1,29, 25|, including averaging in the spectral
domain [12,13], expansion of DM soliton in the basis of the chirped Gauss — Hermite
functions [27, 28, 1].

Because of the practical importance of this problem, it is of evident interest to develop
different theoretical methods to describe the main properties of the basic model in dif-
ferent limits. A variety of complimentary mathematical methods can be advantageously
used to find an optimal and economical description of any specific practical application.
In this paper, using Hamiltonian averaging and quasi-identical-like transform [30] we
demonstrate that in some specific limits (including, in particular, a weak dispersion map
[26]) the DM soliton is described by the integrable NLSE.

. Evolution (in z) of a high-frequency wave in medium with periodically varying dis-
persion and nonlinearity is governed by the NLSE with periodic coefficients d(z) and ¢(z)
(we assume here that both have the same period) that can be written in the Hamiltonian

form: o4 H
iS5 = {4, H} = 50 = —d(2)du — ec(z)| 414, (1)

8z
with the Hamiltonian

H= / {d(z) |4 — c(z) 4] } @)
and the Poisson brackets defined as

G OF oG ) dt

ARG} = / (6A £.7) 04" (t,2) _ 3A°(t,2) 3A(t,7) )

In Eq. (1) the distance z iz normalized by the compensation period L, d(z) = d+ (d)
({d) = 0) describes varying dispersion and c(z) corresponds to power oscillations (due to
loss and amplification). For notations we refer to our previous papers [1,27,13]. Small
parameter ¢ = L/Znyg where L is a compensation period and Zyj, (see e.g. [13,1])
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is a characteristic nonlinear scale. True DM soliton presents a solution of Eq. (1) of
the form A(z,t) = exp(ikz)M(z,t) with a periodic function M(z + L,t) = M(z,t).
The DM soliton can. be viewed as a kind of nonlinear Bloch wave using the terms of
the solid state physics. The goal of the theoretical analysis is to present a systematic
way to describe family of solutions M with different k. The basic idea suggested in
[1,12] is to use a small parameter € to derive path-averaged model that gives systematic,
leading order description of DM soliton. Averaging cannot be performed directly in
Eq.(1) because of the large variations of d 3> (d). However, path-averaged propagation
equation can be obtained in the frequency domain [12,13]. The approach developed in
[12] can be considered as a decomposition of DM pulse dynamics in the fast evolution of
the phase and a slow evolution of the amplitude. The shape of the DM soliton then is
given by nonlocal nonlinear equation, steady state solutions of which give leading order
approximation of DM solitons. In this paper we show that in some limits an averaged
equation can be transformed to the integrable NLSE. First, let us following (12, 13] make
Fourier transform ‘

Alt,2) = / Ao expl-iwt] dw(here Ay = A(w,2)),
and re-write basic equation in the frequency domain.
The equation (1) then takes the form

A,
' a9z

/ Fo2s(2) 8(w + w1 — wg — ws) A} Ap Agdirdwndws = 0, (4)

where F 123 = ¢(z). To eliminate the periodic dependence of the linear part we apply
following [12, 13] the so-called Floquet — Lyapunov transformation [30]

Ay = ¢u exp{~iw’Ro(2) ~i6(w)}, dRo/dz = d(z) - (d). (5)

We have included here the phase factor 6(w), that does not change the z-dependence
of the coefficients. The aim of this transformation is to eliminate the large coefficient d
from (1). In the new variables the equation has the form

22— (@0 b+ [ Guras(s) 8o+ 01— w2 = ) 6 b ds dundundus =0, (6)

here G, 123(z) = c(2) exp{iAQR(2) +iA0} and AQ = Wi +w? —w?—-w?, A0 =0, +6;—
—02 — 03. Note that G123 depends only on the specific combination of the frequen-

cies given by the resonanse surface A{). Both the Fourier and the Floquet — Lyapunov
transform (5) are canonical and the transformed Hamiltonian H is

= @ [0l do - & [ P50+ wn — wr = n)g diadsdudindindus. (1)

Now we apply Hamiltonian averaging. Let us make the following change of the vari-
ables

dw =pu +€ /Vw123 O(w + w1 ~ w2 — w3) Y] P2 Y3 dwydwadws,

Vii2a(2) =14 /o [Guwi23(7) — Tur2s)dr,
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with
1 1
To12s = (Gui2a) = -/(; Gui23(2)dz = /; c(z) exp{iAQRo(z) + iAf}dz. (8)

Path-averaged equation has the form

i a‘Pw

Frale (dyw? oy +¢€ / T123 0(w + wy — wy — w3) 9] P2 3 dwidwadws = 0. (9)

Here p(w) is assumed to decay sufficiently fast in order to assure convergence of the
integral. This equation first has been derived in [12, 13] using simple physical considera-
tion. Since ¢, varies slowly, in the leading approximation, on the scale of one period, we
can neglect their evolution and integrate Eq. (6) over the period placing ¢, outside of
the integrals in z. The Hamiltonian averaging introduced here presents a regular way to
calculate next order corrections to the averaged model. From the Hamiltonian structure of
the starting equation it is clear that the matrix element T,,;23 has the following symmetries
(compare with [31])

Tu123 = Thw2s = Tursz = Toay- (10)

In the case of the lossless (c(z) = co = const, see for details [1]) model and two-step
dispersion map built from a piece of a fiber with the dispersion d; + (d) and length I;
followed by fiber with dispersion da + (d) and length l; =1 —{; (dily +d2(1 — 1) = 0)
the matrix element 7,123 takes especially simple form '

sin[pAQ/2)

uAQ/2 (11)

Tii23 =

The parameter i = dyl; introduced here is a characteristic of the map strength. Strong
dispersion management corresponds to large p >> (d) and the so-called weak map cor-
responds to p < (d). We demonstrate below that, in particular, in the limit of small u
the averaged equation (9) can be transformed to the NLSE. Note that the equation (9)
possesses the remarkable property. The matrix element Tw123 = ®(AN) exp{iAb} is a
function of A2 and

1 : 1
®(0) = / c(z)dz = (c), ®'(0) = —i{cRp) = ——i/ ¢(z) Ro(2)dz (12)
) 0
on the resonant surface '
wtw —wp—wy3 =0, AQ=0?+w?-wi-wl=0. (13)

This observation allows us to make the following quasi-identical-like transformation, which
eliminates the variable part of the matrix element 7,123

T.
=a, + (d) / w123 1 asas 5((4) +w) —wg — ws) dwy dwodws, (14)

where To = #(0) exp{iAf#}. This transformation has no singularities. If the integral part
in this transform is sma.ll compared with a,,, then in the leading order we get for a,,

Ba‘.,

e — (d)w?a, +€/To (w+ w1 — w2 — ws3) a] a3 a3 dwidwadws = (15)
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.This is nothing more, but the integrable nonlinear Schrodinger equation written in the
frequency domain.

Obviously, this transformation is qua81-1dent1cal only if the integral in Eq. (14) is
small compared with a,,. This is not so in general case and that is why, typical DM
soliton has form different from cosh-like shape usual for NLSE soliton. However, if the
kernel function in Eq. (14) is small

Tu123(AQ) ~ To
AR

then the averaged model can be reduced to the NLSE. In other terms, this is a condition on
the functions c¢(z) and d(z) that makes possible quasi-identical transformation is possible.
For instance, one can check that for two-step map described above in the limit p — 0,
this transformation is, indeed, quasi-identical and the path-average model is the NLSE.
Thus, we can express (in this limit) solutions of the equation (9), and, consequently, of
the original equation (1) via solutions of the NLSE in the explicit form:

5(A9) = <1, (16)

A(t, Z) = faw (‘3{_"‘”—‘.‘”2 Ro—io}dw+€ /leza aI az ag 5((.0 +w); —wy — w3) dwydwydwzdw,

here
Tu12s — To . , .
Waina(2) = (Vosas + 220 ) exp(iot - ia? Ro(s) - @)} 1)
and a,, is a solution of the NLSE (15).
The averaging transformation can also be presented as
SK
¢w=‘Pw+5%‘=‘Pw"5{Kﬂpw}- (18)

Therefore, this transform can be viewed as the leading order term in the expansion of a
canonical exponential (Lie) transformation

¢ = exp [{eK,...}] pu, (19)
with the functional

Vi
K= / w2123 0(w + wy — wy — ws)p, P1P2psdwdw; dwadws.

After averaging the Hamiltonian H takes the form

T
() =@ [ loul do - ¢ [ 22500 11 - s - wo)ol i pagsdudurdundus. (20)

The quasi-identical transform of the Hamiltonian (H) (7,123 — To) is given by the
formula Eq. (19) with a corresponding functional K

T, T
= / ;z'gAQ ~ o 6w + w1 — wz — ws)al,a] azagdwdw; dwydus.

In conclusxon, using Hamiltonian averaging and quasi-identical-like t'ra.nsformation,
we have shown that in some specific limits nonlinear wave propagation in gystem with
periodically varying dispersion and nonlinearity can be described by the integrable NLSE.
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