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We analyze the change in the resistance of a nanostructure consisting of a diffusive
ferromagnetic (F) wire and normal metal electrodes, due to the onset of superconducti-
vity (S) in the normal electrode and Andreev scattering processes. The superconducting
transition results in an additional contact resistance arising from the necessity to match
the spin-polarized current in the F-wire to the spinless current in the S-reservoir, which
is comparable to the resistance of a piece of a F-wire with the length equal to the spin-
relaxation length. It is also shown that in the absence of spin relaxation the resistance of
a two-domain structure is the same for a ferro- or antiferromagnetic configuration if one
electrode is in the superconducting state.

PACS: 72.10.Bg, 74.50.+r, 74.80.Fp, 85.30.5t

In recent years, studies of transport in mesoscopic conductors with strongly correlated
electrons have revealed a number of novel phenomena, including the occurrence of a giant
magnetoresistance (GMR) in multilayer FN structures [1], where F(N) are ferromagnetic
(normal) metals. At the same time a variety of new transport properties arising from su-
perconductivity (S) in mesoscopic NS structures have been identified [2, 3]. More recently
the effect of superconductivity on transport properties of spin-polarized electrons in mag-
netic materials was studied [4—8] and it was observed that the onset of superconductivity
may lead to both an increase and decrease of the conductance of an F film [4—-6]. This
change may be as much as 10% of the normal state conductance and is too large to be
attributed to the superconducting proximity effect (in magnetic materials, such as Ni and
Co, the exchange energy €. is two orders of magnitude larger than the superconducting
gap A, which suppresses the proximity effect).

It has been pointed out by de Jong and Beenakker [9] that, when the conductivities
a+ and o for spin-up and spin-down electrons in a ferromagnetic material are different,
then the resistance of a ferromagnetic wire increases due to contact with a superconduc-
tor. This is because the electrical current in the s-wave superconductor is spin-less, and
matching the spin-polarized current in the ferromagnet to the spin-less current in the
S-reservoir involves the Andreev scattering process, which increases the resistance of a
system. When the ferromagnetic wire is long and when spin-relaxation processes in it are
efficient, the resistance variation of a diffusive FS structure caused by this mechanism
has the form of an additional contact resistance [10] of the FS interface, which can be
also extended onto multi-terminal geometry [11]. The necessity to match the spin-less
and spin-polarized currents at the FS interface also results in a different non-equilibrium
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population of spin-up and -down states within the spin-relaxation length, L, near the
superconducting contact.

In the present paper, we consider a nanostructure consisting of a ferromagnetic wire
with one (F44) or two anti-collinear (F;) domains embedded between two normal reser-
voirs, one of which becomes superconducting at 77 = T,.. 'The sequence of domains in
a ferromagnetic wire represents our simplified view of a multilayer GMR structure. We
calculate the resistances of these structures, Ry+n, Rt N, Rtts and Ry s in¥ the limit of
« long and short spin-relaxation length (L, >> L, L, << L) and in the case when the
FS interface itself causes the spin-relaxation (for example, due to spin-orbit coupling).

- 'We find that, in the absence of spin-relaxation, R4ty < Ry v = Rtts = Rys, 50 that an
applied magnetic field (which polarizes domains) yields a non-zero resistance variation
above T,, as in typical giant magnetoresistance systems, and gives no resistance variation.
at T « T.. Spin-relaxation processes of any kind (either due to spin-orbit coupling
in the bulk of a ferromagnetic metal and its surface, or caused by a non-collinearity of
ferromagnetic domains in the wire) change the resistance Rt+s, leading to a non-zero
magnetoresistance at T < T.
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Pictorial representation of the two-domain FS
structure with ferromagnetic (a) and antiferro-
magnetic (b) alignment of domains, a double
Andreev reflection process in it, and of possi-
ble relations between Fermi surfaces of spin-up
and -down electrons in the F-wire (left) and in
the N(S) metal (right)

First of all, we consider a structure F++N(S) shown in Figure a, which consists of
a single ferromagnetic domain. The resistance of a disordered F-wire can be found by
solving diffusion equations for the isotropic part of the electron distribution function,
na(z,€) = [dQpna(z,p). Using the electron-hole symmetry, we restrict our analysis to °
the calculation of a symmetrized function Ny (e, z) = 1/2[nq4(2,€) + na{z, —€)], where ¢
is determined with respect to the chemical potential in the S(N) electrode. In terms of
N, (g, 2), the electric and spin current densities are given by

Jjo.M = Ja £ ja / ——a N E, Z), (1)

where @ = ({,1) for @ = (1,{), 0a = €2vqDq, Vo and D, are the density of states and
diffusion coefficient for electrons in the spin-state a. Functions N, (e, z) obey the diffusion

D Indices $(J) stand for the alignment of magnetization of the domains, and S(N) ~ for the normal
and superconducting:state of the right-hand reservoir, respectively.
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equation

DaafNa(Z,E) =wT¢Va[Na(Z,€)—-Na(Z,€)], (2)
which is more convenient to use in the equivalent form
82 > DavaNa =0, [8; - L7?] (Ny = N,) = 0. (3)
a=ti

The term on the right hand side of Eq. (2) accounts for spin relaxation, which may
result from both spin-orbit or spin-flip scattering at defects. It can be used to define the
effective spin-relaxation length, L, as L; 2 = wy, [v1/Dy + v/ Dy). This pair of equations,
which ignore any energy relaxation, should be complemented by four boundary conditions,
two on each side of the ferromagnetic wire.

The boundary conditions for Eqs. (2), (3) can be obtained in various ways. We employ -
the model shown in Figure, where the FS junction is replaced by a sandwich of three
layers: (i) a ferromagnetic (F) wire of the length L connected to the bulk F reservoir,
(ii) a normal metal layer (IN) which never undergoes a superconducting transition by
itself and has a negligible resistance, and (iii) a bulk electrode S(N) which undergoes
the superconducting transition. The insertion of a normal metal layer N between the
F and S(N) parts allows us to formulate the boundary conditions at the FS interface
using known boundary conditions at the NS interface [3]. For the sake of simplicity,
we consider N to be ballistic and the FN junction to be semiclassically transparent, so
that electrons either pass from one side to the other, or are fully reflected, depending
on whether this process is allowed by energy-momentum conservation near the Fermi
surface. The latter approximation avoids resonances through the ’surface states’ [12] due
to multiple passage through the normal layer inserted between S and F. As illustrated
in Figure, we approximate the spectrum of electrons by parabolic bands - two for spin-
down and spin-up electrons in F, and one in the N-part, which we take into account by
introducing the parameters §2); = p2y/p%, and &2 = (pp;/prt)” < 1. The NN interface
is assumed to be ideal, and the Fermi surfaces in N and N layers to be the same, so
that NS Andreev reflection has unit probability. In such a model, the momentum of an
electron in the plane of the junction is conserved.

The boundary conditions on the left end are given by the equilibrium distribution of
electrons in the F-electrode,

Na(-Lj2,¢) = -;- [nr(e — V) + np(—¢ — eV)]. 4)

The boundary condition on the other end depends on the state of the electrode, and
in the superconducting state takes into account Andreev reflection at the NS interface
[13]. Since in our model of an ideal FN interface, the parallel component of the electron
momentum is conserved, the effective reflection/transmission of electrons in parts I and
IT of the ferromagnet Fermi surface sketched in Figure are different. Although non-
equilibrium quasi-particles from F pass inside N and generate holes by being Andreev
reflected at the NS interface, only those holes which are created by quasi-electrons from
part I of the Fermi surface in F may escape into the F-wire. The spin-down holes which
were generated by spin-up electrons from part II of the Fermi surface cannot find states
in F, so that they are fully internally reflected into N. Then, they undergo a second
Andreev reflection, convert into spin-up electrons, and return back into the ferromagnetic
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wire. This results in complete internal reflection of spin-up electrons from part II of the
Fermi surface inside the F-wire, which nullifies the spin current through its F'S edge.

The boundary condition near the FN junction can be found by matching the iso-
energetic electron fluxes determined in the diffusive region found in the ballistic F-region
using the reflection/transmission relation between the distributions of incident and An-
dreev or normal reflected electrons. For quasi-particles with energies 0 < € < A this can
be written in the form

aTB,NT - 0'¢3,N¢ = —3(NT - Ni)’ (5)
Ny+ N, + g-xa’-z \O.N, = 2Nr(e), (6)

where 3 = (1 — 62)3/2/§%, 6% = p}, [P}y < 1, and Nr(e) = 1/2[nr(€) + nr(—€)] = 1/2
at T = 0. The spin-relaxation term on the right hand side of Eq. (5) takes into account
the spin-orbit relaxation on the FN interface.

One can obtain boundary conditions in another way, after having considered both F
wire and an auxillary N piece of a normal metal in the diffusive limit using the known
boundary conditions at the NS interface [3]. Then, Eq. (5) follows from the condition
0,fa = 0 at the NS interface [3,14], where fo = [nq + (1 — ng(—¢€)]/2 is the sum of
the distribution functions of electrons and holes. Eq. (6) emerges from the equilibrium
condition for electrons and holes in opposite spin states at the SN interface (if we neglect
the third term on the left in Eq. (6) and set the electric potential equal to zero in S).
At energies above the superconducting gap A, the boundary conditions coincide with Eq.
(4).

For a ferromagnetic wire with sufficient intrinsic spin-relaxation, L, << L, we find
that the contact resistance of the FS boundary is equal to

S _ L, §2 RDI+ >
rc_RDH1_<2+ 3L_L1+§, (7)
where ( = (o4 — 0,)/( o1 + o)) is the degree of spin polarization of a current in a
mono-domain ferromagnetic wire, R is the resistance per square of a mono-domain
ferromagnetic film, and L is the wire width.
In the normal state of the right hand reservoir, the boundary conditions at the end of an
F-wire depend on the relation between the Fermi momenta of electrons in the ferromagnet
and normal metal,

= Nr(e) o ®
z=L/2

4XaN Da
Va

Na(z,e) + 8:Na(z,€)

where san = (1 —62)%/2 /62y, San < 1, and sy = 0, don > 1, 82y = p&n/PE, These
result in the contact resistance term

L (1+s 3 7!
T§=RD+—(‘r){(1—C)I+/LJ+§x+;J} y (9)

which has sense only when it is larger than the resistance of a short piece of F-wire with
length of the order of I,.. Otherwise, it should be neglected.

After comparing the latter result to rS, we find that the resistance of a long ferromag-
netic wire attached to a S-electrode exceeds the resistance of the same wire connected to
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a normal reservoir by the resistance of an F-segment of length of order of L,. One can
extend the result of Eq. (7) to finite temperatures, which yields the resistance variation
below the superconducting transition [10]

Rs(T)—RN~1—i?£ Rgtan h(Az(;‘f)) (10)

Note that the increase of the resistance in Eq. (10) originates from the matching of a spin-
polarized current in the highly resistive ferromagnetic wire to a spinless current inside
the superconductor. We expect this robust effect to be present both in the mono-domain
and poly-domain wires, with domain size Lp > L,.

The solution of Egs. {2)—(6) can also be used to describe the contrastmg case of a
ferromagnetic wire where all spin-relaxation processes take place only at the FS interface.
Such a structure may consist of either of one or of two ferromagnetic domains with anti-
parallel magnetizations (antiferromagnetic configuration), as shown Figure b. In the latter
case, we neglect the local microscopic F4+F interface resistance, so that the boundary
conditions for N,(x) at the domain wall can be reduced to the continuity equation for the
spin-current, 0,8, N, and for the distribution functions N,. This yields

L o+ o
Ryx =Rys=-——L

Bosn =
TN ot +o,’ 4040,

and

L{oy + 0y +4s(L/2) )
4(oroy + 8(L/2) (o1 + 0y))

From this, we deduce that the alignment of magnetizations in two domains results in
a significant change of the resistance in the case of normal reservoirs (N) and leaves the
conductance unchanged when one of the reservoirs is a superconductor if spin relaxation
is completely absent, or the wire is too short: Rt+s(sL — 0) — R4 s. A similar behavior
has been observed in numerical simulations of the transport through the giant magne-
toresistance system with S-contacts [15]. In a word, when superconducting leads inject a
spin-less electric current into the spin-conserving multi-domain system, the change in the
polarization of domains does not affect of resistance of the system. Spin-relaxation at the
FS surface restores the sensitivity of the system to the polarization state of domains, and
in a long wire {L — oo) the interplay between Andreev scattering and spin-relaxation
results in a contact resistance, similar to that in Eq. (7):

Ryps =

2 A(T)
Rurs(T) = Ry~ 5 sanh (550, (12)

Note that the electric current generates a non-equilibrium magnetization, M =
= u(vy [ deNy — v,  deN,), which is different for different configurations: § My = 0,
4VTV¢
vty

1 1
‘SMTTS = (Z/L+ E)MO’ 5MTJ,N = JMNS = (5 - |z|/L)Mo, My =eV SH

for T <« T.. Here, p is the magnetic moment of electrons, —L/2 < z < L/2, and z = 0
corresponds to the F4+F; domain wall.
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In summary, we have shown that in the absence of any spin relaxation the resistances
of the structures F4 N, F4,S and F44S coincide, but differ from the resistance of the
F4 N structure. This can be regarded as a prediction of a suppression of the giant
magnetoresistance in multilayer FN structures with superconducting leads and no spin-
relaxation. Surface spin-relaxation at the F'S interface alters the equivalence between Ry
and R4 resistances. When the spin-relaxation is fast in the bulk of the ferromagnetic
material, the resistance of the F4+S structure changes at the superconducting transition
by a contact resistance value which depends on the spin relaxation rate. For example,
in a ferromagnetic wire with the size of a ferromagnetic domain larger than the spin-
relaxation length L,, the resistance variation is formed within the L,-segment of the F
wire (where the spin-polarized current from the F-part relaxes to a spin-less current in -
S), and Rs(T') — Ry increases from zero at T, to a positive value at T = 0.
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