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The jump kinetics on a quasiperiodic pinning potential is analyzed under small ex-
ternal force in a model of 1D Fibonacci quasilattice. The model describes planar (layer)
growth of stable quasicrystals from the melt and is also relevant to the movement of qua-
sicrystal dislocations under small stress. Exact solution is found for the spectrum of jump
length as function of the driving force. The solution describes the supercooling dependence
of the nucleus heights spectrum on the growing surface of a quasicrystal. The spectrum
appears to be universal and its shape has a periodical dependence on the logarithm of
supercooling. Resulting quasicrystal growth kinetics agrees well with that found in the
computer simulations and in the analysis of continuous thermodynamic models.

PACS: 61.72.Hh, 68.35.M, 81.10.Aj

Dynamics of a crystal growth is usualy studied through the kinetic equation for a
model Hamiltonian that involves a surface tension along with the pinning term [1,2].
Supercooling is a thermodynamic driving force and the kinetic coefficient corresponds
to the surface mobility. The model describes temperature-induced roughening transition
between the smooth and rough states of equilibrium surface as well as dynamic roughening
transition separating normal and layer growth mechanisms. A layer (planar) growth
proceeds through the thermally activated nucleation of 2D nuclei followed by their lateral
expansion via the movement of the surface steps [3]. Thus, surface jumps between the
minima of pinning potential with the jump length being equal to the period of pinning
potential i.e. the lattice period in the direction of growth. The growth rate in this case has
an exponential dependence on the supercooling in a contrast with nomal growth where
this dependence is linear [2, 3].

In the case of quasicrystals the pinning potential is quasiperiodical due to quasiperi-
odicity of their atomic structure. The thermodynamic roughening temperature appears to
be infinite 4, 5] and, hence, the equilibrium surface remains smooth at any temperature.
This corresponds to experimentally observed growth shapes for stable quasicrystals and
implies the layer growth at sufficiently small supercoolings [2]. Due to guasiperiodicity
the thickness of growing layer of a quasicrystal can take values from a dense set of the
interplane distances” [6]. Thus, during growth of quasicrystal under fixed supercooling
there is some spectrum of the thickness of growing layer (nucleus height).

In this paper I present the exact form of this nucleus height spectrum obtained by
solving the pinning problem on the 1D Fibonacci quasilattice. The model is also relevant
to the movement of dislocations in quasicrystals under small stress due to the fact that
intrinsic ‘phason’ contribution into the energy of dislocation leads to the quasiperiodic
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Peierls potential. The paper is organized as follows. After description of some features
of quasicrystal growth and brief analysis of the dislocation mobility in quasicrystals the
1D kinetic problem is formulated. The exact solution of this problem is then presented
followed by the discussion of its implications with respect to available experimental data.
For conventional crystals the energy of any perturbation on a flat solid-liquid interface
consists of the bulk supercooling term along with the free energy of a linear step that has
large entropic contribution [3]. This entropic term makes step free energy negative at
the temperatures above thermodynamic roughening transition for conventional crystals.
As the quasicrystal structure is not invariant under translations, there is an additional
area-proportional contribution to the nucleus energy due to the difference in the surface
energy between old and new positions of the surface [7]. The layer of a thickness h can
appear during the quasicrystal growth only if corresponding ‘effective supercooling’ [7]

Apiess(h,2) = Ap — Ac(h, 2)/h 1)

is positive. Here Ay = polid — Bliguid 1S the supercooling and Ao is the difference in
surface energy. Ap.sy depends not only on the nucleus heigh h but on the current location
z of a surface as well. The nucleus appearing on the growing surface located at z for a
given supercooling Ay is selected by the smallest height h with positive Apu.z¢(h, 2) [8].
The surface energy o(z) can be expressed [7] as o(z)) o 2, with 2, and z, being
the ‘physical’ and ‘orthogonal’ components of the 6D quasilattice vector z {9]. Then the
‘effective supercooling’ takes the form
2
Apess(h) = A - 42827 @)
where A(z,2) = (z2+h), % — 2z, 2. This expression for the ‘effective supercooling’ leads
to the power-law dependency of average nucleus height on the bulk supercooling [7, 8]:

hoc (Ap)™Y3 3)

The dislocation movement in crystals is described by the thermodynamic model sim-
ilar to the crystal growth. There are terms in Hamiltonian corresponding to a periodical
pinning (Peierls barriers) and to the dislocation line tension. The nuclei correspond to
dislocation kinks and the stress component in the sliding plane plays a role of the super-
cooling. The dislocations in quasicrystals have 6D Burgers vector [10] and their movement
involves ‘phason’ displacements which correspond to diffusion-like atomic rearrangement.
Thus, the dislocation movement in quasicrystals is not a sliding but is similar to a ‘creep-
ing’ [11] which is accompanied by atomic diffusion.

The formation work for a dislocation kink is proportional to the product of the Burg-
ers vector to the kink normal and the translation vector. As Burgers vector has phason
component, contribution proportional to perpendicular component of the translation vec-
tor appears. Minimization of this work with respect to both the translation length and
the orientation of kink normal leads to the expression for activation energy similar to the
nucleation barrier for quasicrystal growth. Thus, results for planar growth of quasicrys-
tals are relevant to the dislocation problem as well. Quasiperiodic pinning potential for
dislocation movement was obtained in a computer simulation of the quasicrystal disloca-

tions?.
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The problem has one spatial dimension which is the surface position in the direction
of growth and can be analyzed within simplified one-dimensional model. The cut-and-
project method of generation of the atomic structure of quasicrystals [9] can be used
to generate 1D quasiperiodic sequence of the minima of pinning potential through the
projection from a 2D square lattice. The ‘physical space’ here is a straight line with a
slope of the ‘golden mean’ 7 = (v/5 + 1)/2 and the node (p, q) is projected to the point

A (»q), =r+q9/vT+2 (4)
in a physical space if (p, g) falls within parallel ‘tube’ of a width w

|-p+qr| w 1 741
=l E e = 5
ea.l="0g <2 i ®)

The pinning potential at this point is defined similar to Ao (2) as V((p,q),) = (@)% . It
might be shown that for sufficiently small supercoolings this model is equivalent to the
quasiperiodic pinning potential

V(z) = —Vg (cos(Gz) + cos(Gz /7)), (6)
used previously in a continuous model [8] and in the Monte-Carlo simulation {12].
The growth process can be fully characterized by a sequence of the surface locations
(p, ), with the nucleus heights h, being the difference between two subsequent positions.
At any current point (p,q), the next surface position is determined by a smallest k|
satisfying the condition of positiveness of effective supercooling

Bprsh) = - @D Z 002 -
I

Here h,, corresponds to a unique 2D lattice vector h and the supercooling is measured in
such units that constant A in the expression (2) for Apu.s; disappears. Due to irrational
slope of the projection from 2D square lattice there is a one-to-one correspondence between
points of the ‘physical’ and orthogonal space and, hence, the growth process can be
described by the surface locations in the ‘perpendicular’ space. At every step the minimal
jump length h, is selected from all lengths satisfying condition (7) that can be written as

by (0), <3 (Buh, —h?) . ®)

Since nodes of 2D square lattice form a dense set of points in the orthogonal space the
spectral weight of particular h, is equal to the relative size occupied in this set by those
(p,q).’s where the condition (8) leads to the selection of h, .

The ratio of two subsequent Fibonacci numbers fi11/fm are known to give the best
rational approximation to the ‘golden mean’ r. Then, Eqs.(4) and (5) imply that the
vector of 2D square lattice of a kind hy, = (fm+1, fm) has the lowest ‘orthogonal’ length
h, from all ones with comparable ‘parallel’ component h, and corresponding nucleus
height is a lowest one satisfying the condition (8). Thus, the nucleus height spectrum in
this model of the quasicrystal growth for sufficiently small supercoolings should include .
only heights h,,, corresponding to the Fibonacci numbers. It has a form of discrete set of
peaks and their spectral weight {,(Au)} is determined by the supercooling Ap.
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Using the definition of the Fibonacci sequence in recurrent form with fo = 0 and
f1 =1 we can get from Eqs.(4) and (5)

T'm+1 —m

m-1_T

hon), = Jri2 hm =(-1) Stz (9)
Introducmg following set of pomts in the ‘perpendicular’ space
Sm = (Ap Pl r 2 - 1) (10)
we can get the condition (8) in the form
| (r,9), <Sm for hy, >0 (11a)
(P,q). > Sm for hp,, <0. (11b)

At every location of the growing surface (p, q)|| the nucleus height Ay, , is selected accord-
ing to the lowest m that satisfies condition (11).
Using (9) we can obtain from the definition (10) the following recurrent scaling law

Sm+1(t73 Ap) = -7 S (Ap) . (12)

As the jump lengths (9) satisfy similar recurrent relationships h(m+1), = -7 1hy,, this
scaling holds for the set of points (p,q), representing surface position in perpendicular
‘space’ satisfying (11). Since the appearance of particular height in the spectrum is
determined by the relative size of a subset of points (p, g}, satisfying Eq.(11) for particular
m, such a scaling imply that the nucleus height spectrum has the following invariance

Em+1(172 Ap) = zm(Ap) . (13)

Thus, we can consider supercooling only within the interval between Au* 13 and
Ap* for some particular Ap*. Spectrum for all other Au’s can be easily obtained through
(13). Let us choose Ay}, that corresponds to an equity Sy, = Sp-1 for some odd m.
Introducing relative supercooling xm by Ap = £, Ap}, we can obtain

h(m+l)_L Km 7.3 (1+1)
St = 223 ( - 1) (14)
with
Sm-1+mr), < Sm < Sm-1 < Sm + hm, - (15)

Direct geometrical analysis of the condition of (11) shows that regardless of the starting
point, the perpendicular component of the surface position (p, g), falls into the interval
between Sp—1 + h(m-1), and Sm + hm, in a finite number of steps. For (p,q), >
> Sm + hm, only jumps with negative A(m1), are possible and for (p,g), < Sm-1+
h(m-1), only positive h(;4;), can occur. Once into this interval the point representing
surface remains confined and fills this interval closely due to irrational slope of the pro-
jection line. Comparing Au,ff(h(,,ﬂ_,)”) for different ! it is easy to see that for jumps of
h(m+1), the surface position in perpendicular space (p,g), should belong to the following
intervals

Sm—l < (p, q)_L < Sm + hmJ_, l = —1, (163)
Sm-1+ h(m—l)_L <(p,q), <Sm, 1=0, (16b)
Sm < (P9, <Sm-1, 1=1, (16¢)
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with only finite possible appearance of other h(mr), ’s. The relative size of these intervals
gives us the spectral weight of different peaks:

K — T Ko + 773 1-Fm

Km + 1 km+1 "’ $m+1(ﬂm)—nm+1-
All other h(pmir), s correspond to finite number of points (p,q), - Such subsets have zero
measure in perpendicular space and, thus, do not contribute into the spectrum. Mean
nucleus height has the following expression in the spectrum (17)

= 2r(m-1) v3-7 .
Km — 1

xm——l("’m) = ) zm("“m) = (17)

hmean (K'm) (18)

At the borders of the k,, interval there are only two peaks

-3 -3 2773 gy 1-772 -3
Tm-1(r73) =0, zm(r™)= pprp—t Tmi1(T77) = T35 TZm(r7°) (19)
and
1-773 14773
em1(l) = ——, Zm(l) = =rem1(l), Zmsr()=0.  (20)

2
For Kk, > 1 a peak at m — 2 appears as does the m + 2 peak for km < 773,

Xin(84) | —
0.6} m=3 x
m=4 x
0.5} ::2 E
i m=7 ©
0.4
0.3}
0.2 Fig.1. The nucleus height spectrum
calculated in the present model as
0.1t * a function of supercooling Ap (full
/ A curves) in a comparison with the re-
0 s K sults of numerical simulation
0.0001 0.001

Main features of this spectrum agree well with the results of Monte-Catlo simula-
tion [12] where universal discrete spectrum corresponding to three subsequent Fibonacci
numbers has been found for the quasiperiodic double-cosine pinning potential. Calculated
spectrum is shown at Fig.1 in a comparison with results of numerical calculations (13],
where periodical dependence of the spectrum on the logarithm of Ap was obtained with
a period of 3 log 7. Fig.2 shows periodical dependence of mean nucleus height on super-
cooling with small deviation from the power-law expression (3) obtained in a continuous
model which appears to be a good average approximation for Eq.(18).

The discrete nature of the spectrum of nucleus heights leads to a step-like dependency
of the growth rate on supercooling [12]. Since activation barriers for different hm,, differs
by the orders of magnitude (7] the growth is controlled by the nucleation of the layer with
maximal thickness. It means that when the supercooling Ay varies in the interval between
Apy, ;1 and Apyy, the growt rate experiences small changes. However, when supercooling
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passes through Apy. the highest peak corresponding to hy,’ 2 disappears and growth rate -
undergoes drastic increase.

20 [Tmeart@H)
15}
10+
Fig.2. Calculated dependence of
the mean step height Amean on Apu
in the present model (full curve)
compared with numerical results
(triangles).  Straight line is a
5k power-law dependency hAmean
Ap—-l/a
Ap

0.0001 0.001

Similar pattern should appear in the case of quasicrystal dislocations where growth rate
corresponds to the dislocation velocity. It should have small variations for the stress values
corresponding to the same peaks in the spectrum with drastic changes around critical
stress that leads to the appearance of new peaks in the spectrum. If the quasicrystal
has finite density of defects then defects prevent formation of kinks larger than some
particular size. Hence, activation-driven dislocation movement would not be possible
under the stress level that implies appearance of larger kinks in the spectrum of kink
sizes.

Thus, unlike the case of the growth of quasicrystals, the critical stress levels not only
correspond to drastic changes in dislocation velocity but the dislocations become frozen
for a critical stress corresponding to some m. It allows experimental test of the proposed
model since the stress level associated with drastic changes in the dislocation velocity
should form periodic pattern on a logarithmic scale and the critical stress leading to the
dislocation freeze should belong to this pattern as well.
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