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Static properties of multiskyrmions with baryon numbers up to 8 are calculated, based
on the recently given rational map ansaetze. The spectra of baryonic systems with strange-
ness, charm and bottom are considered within a "rigid oscillator” version of the bound
state soliton model. It is suggested that the recently observed negatively charged nuclear
fragment can be considered as a quantized strange multiskyrmion with B = 6 or 7. In
agreement with previous observation, baryonic systems with charm or bottom have more
chance to be bound by the strong interactions than strange baryonic systems.

PACS: 12.40.-y, 14.20.-c

1. The topological soliton models, and the Skyrme model among them [1], are attrac-
tive because of their simplicity and the possibility that they may describe well various
properties of low energy baryons. The models of this kind provide also a very good
framework within which to investigate the possibility of the existence of nuclear matter
fragments with unusual properties, such as flavour being different from v and d quarks.
In addition to being important by itself, this issue can have consequences in astrophysics
and cosmology. It is well known that the relativistic many-body problems cannot be
solved directly using the existing methods, and the chiral soliton approach may allow to
overcome some of these difficulties. .

The description of skyrmions with large baryon numbers is complicated because the
explicit form of the fields was not known. A recent remarkable observation [2] that the
fields of the SU(2) skyrmions can be approximated accurately by rational map ansaetze
giving the values of masses close to their precise values, has simplified considerably their
studies. Similar ansaetze have also been recently presented for SU(N) skyrmions (which
are not embeddings of SU(2) fields) (3].

Here we use the SU(2) rational map ansaetze as the starting points for the calculation
of static properties of bound states of skyrmions necessary for their quantization in the
SU(3) collective coordinates space. The energy and baryon number densities of the
B = 3 configuration have tetrahedral symmetry, for B = 4 — the octahedral (cubic) one
(4], for B = 5 — D,4-symmetry, for B = 6 — Dyq, for B = 7 — dodecahedral symmetry,
and for B = 8 — Dgg — symmetry [5,2], etc. The minimization, with the help of a
3-dimensional variational SU(3) program [6], lowers the energies of these configurations
by few hundreds of MeV and shows that they are local minima in the SU(3) configuration
space. The knowledge of the “favour” moment of inertia and the T-term allows us then
to estimate the flavour excitation energies. The mass splittings of the lowest states with
different values of strangeness, charm or bottom are calculated within the rigid oscillator
version of the bound state approach. The binding energies of baryonic systems (BS) with
different flavours are also estimated.

2. Let us consider simple SU(3) extentions of the Skyrme model [1]: we start with
SU(2) skyrmions (with flavour corresponding to (u,d) quarks) and extend them to various
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SU(3) groups, (v, d, 8), (u,d, ¢), or (u,d,b). We take the Lagrangian density of the Skyrme
model, which in its well known form depends on parameters F,, Fp and e and can be
written in the following way [7]:

2 2,,2
c=Frm, "+ 5 1 oz Tl LI? + Bme @ + Ut - 2)+
16 16
Fim}, — Fim3 t_ F? ® wprt
+—-——§4————’I‘r (1-V3)(U+U 2)+T (1-V3xe) (UL * +1,1#UT). (1)

U € SU(3) is a unitary matrix incorporating chiral (meson) fields, and [, = U'9,U. In
this model F is fixed at the physical value: F, = 186 MeV. Mp is the mass of K, D or
B meson.

The flavour symmetry breaking (FSB) in the Lagrangian is of the usual form, and
was sufficient to describe the mass splittings of the octet and decuplets of baryons [7].
The Wess-Zumino term, not shown here, plays an important role in the quantization
procedure, but it does not contribute to the static masses of classical configurations [8].

We begin our calculations with U € SU(2), as was mentioned above. The classical
mass of SU(2) solitons, in most general case, depends on 3 profile functions: f, o and
3. The general parametrization of Uy for an SU(2) soliton we use here is given by
Up = ¢ + sprn with n, = ca, Nz = 8aCg, Ny = 3433, 8= sin f, ¢y = cos f, etc.

The masses of solitons, moments of inertia, I' and I' are presented in the Table below.

B M, [P ]er [ T W, we we | Aea Ae. | Ag
T | 1.702 | 2.04 | 555 | 4.83 | 15.6 | 0.300 | 1.542 | 4.82 | — — —

3 | 480 | 634 | 144 | 140 | 26.7 | 0.289 | 1.504 | 4.75 | —0.041 | —0.01 | 0.03
4 | 620 | 827 | 168 | 18.0 | 31.4 | 0.283 | 1.493 | 4.74 | —0.020 | 0.019 | 0.06
5 | 778 | 108 | 235 | 23.8 | 35.3 | 0.287 | 1.505 | 4.75 | —0.027 | 0.006 | 0.05
6 | 924 | 131 | 25.4 | 20.0 | 38.2 | 0.287 | 1.504 | 4.75 | —0.019 | 0.017 | 0.05
7 | 106 | 147 | 28.7 | 32.3 | 44.4 | 0.282 | 1.497 | 4.75 | —0.017 | 0.021 | 0.06
8 [ 122 | 174 | 334 | 389 | 469 | 0.288 | 1.510 | 4.77 | —0.018 | 0.014 | 0.02

Characteristics of the bound states of skyrmions with baryon numbers up to B = 8. The classical
mass of solitons M, is in GeV, moments of inertia, T’ and ' — in GeV~!, the excitation frequences
for flavour F, wp in GeV. The parameters of the model Fr = 186 MeV, e = 4.12. The accuracy of
calculations is better than 1% for the masses and few % for other quantities. The B ='1 quantities are
shown for comparison. Ac, 3, in GeV, are the changes of binding energies of lowest BS with flavour
s,cor b, |[F| =1, in comparison with usual (u,d) nuclei (see Eq.(14)).

The flavour moment of inertia enters directly in the procedure of quantization [9-17],
and for arbitrary SU(2) skyrmions is given by [15,17]:

Or = g [W-cplFs + S (097 + 500 + 3207 ()

It is simply connected with @g) for the flavour symmetric case: O = (-)(F?) + (F3/F? -
~1)I'/4, T is defined in (3) below. The isotopic moments of inertia are the components of
the corresponding tensor of inertia [9, 10], in our case this tensor of inertia is close to unit
matrix multiplied by ®r. The quantities I' (or Z-term), which defines the contribution
of the mass term to the classical mass of solitons, and I" also are used in the quantization
procedure:

= Fz; /(1 - ¢g)d®r, (3)
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I'= %/cf [(85)% + s?:(ﬁa)2 + s?si(Bﬂ)z]dar. (4)

3. To quantize the solitons in SU(3) configuration space, in the spirit of the bound
state approach to the description of strangeness proposed in [11,12] and used in [13, 14],
we consider the collective coordinates motion of the meson fields incorporated into the
matrix U:

U(r,t) = R(t)Uo(O()r)RN(t),  R(t) = A()S(t), (5)

where Uy is the SU(2) soliton embedded into SU(3) in the usual way (into the left upper
corner), A(t) € SU(2) describes SU(2) rotations, S(t) € SU(3) describes rotations in
the “strange”, “charm” or “bottom” directions, and O(t) describes rigid rotations in real
space;
S(t) = exp(iD(t)), D)= Y. Da(t)Aa, (6)
a=4,...7

Ao are Gell-Mann matrices of the (u,d, s), (u, d, c) or (u,d,b) SU(3) groups. The (u,d,c)
and (u,d,b) SU(3) groups are quite analogous to the (u, d, s) one. For the (u, d, ¢) group
a simple redefiniton of hypercharge should be made. For the (u,d, 3) group, Dy = (K+ +
+K~)/V2, Ds = i(Kt — K~)//2, etc. And for the (u,d, c) group Dy = (D° + D°)//2,
etc.

The angular velocities of the isospin rotations are defined in the standard way:
A'A = —iwT/2. We shall not consider here the usual space rotations explicitly because
the corresponding moments of inertia for BS are much greater than isospin moments of
inertia, and for lowest possible values of angular momentum J the corresponding quantum
correction is either exactly zero (for even B), or small.

The field D is small in magnitude, at least, of order 1//N,, where N, is the number
of colours in QCD. Therefore, an expansion of the matrix S in D can be made safely. To
the lowest order in field D the Lagrangian of the model (1) can be written as

L=-Mas+ 4@F,BDTD—

2
- [I‘B (-I;—’;m% - mf,) +Tp(F% - F,f)]D"D - iN;B
*

Here and below D is the doublet K+, K° (D% D—, or Bt, B®). We have kept the
standard notation for the moment of inertia of the rotation into the “flavour” direction
OF = 0,, O, or O [10,15] (the index ¢ denotes the charm quantum number, except in
N.). The contribution proportional to I'p is suppressed in comparison with the term ~ I’
by the small factor ~ F2 /m%, and is more important for strangeness. The term propor-
tional to N.B in (7) arises from the Wess-Zumino term in the action and is responsible
for the difference of the excitation energies of strangeness and antistrangeness (flavour
and antiflavour in general case) [13, 14].

Following the canonical quantization procedure the Hamiltonian of the system, inclu-
ding the terms of the order of N?, takes the form [11,12}:

(D'D - DtD). (7

1
40F

N2B?

Hp = My g+ 16055

o+ (erD+fB(F,2, -F3)+ ) D'D+i sch (DIt D);
B

F.B
(8)
m} = (F3/F2)m}, — m2. The momentum II is canonically conjugate to variable D.
Eq. (8) describes an oscillator-type motion of the field D in the background formed by
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the (u,d) SU(2) soliton. After the diagonalization which can be done explicitly following
[13,14], the normal-ordered Hamiltonian can be written as

Hp = M.,B + UF,Bafa + E)F,Bbtb + O(1/N,.), 9)

with at, bt being the operators of creation of strangeness, i.e., antikaons, and antistrange-
ness (flavour and antiflavour) quantum number, wp,p and Wr,p being the frequences of
flavour (antiflavour) excitations. D and II are connected with @ and b in the following
way [13,14]):

D' = (' +a")//N.Burs, W= /NBurp(t' -a')/2i (10)

with prp = [1 + 16(m3 T + (F3 — F2)['g)OF,5/(N.B)?]'/%. For the lowest states the
values of D are small: D ~ [16I'p®s pm% + NfBz]_l/ 4, and increase, with increasing
flavour number |F| like (2|F| + 1)/2. As was noted in [14], deviations of the field D
. from the vacuum decrease with increasing mass mp, as well as with increasing number of
colours N, and the method works for any mp (and also for charm and bottom quantum
numbers).

The excitation frequences w and @ are:

wr,B = N.B(ur,B —1)/80rB,  @rp= N.B(urs+1)/80F,p. (11)

As was observed in [15], the difference & p — wrp,p = N.B/4OF p coincides, to the
leading order in /N, with the expression obtained in the collective coordinates approach
(16).

The FSB in the flavour decay constants, i.e. the fact that Fx/F, ~ 1.22and Fp/F, =
= 1.7+ 0.2 (we take Fp/F, = 1.5 and Fg/F, = 2) leads to the increase of the flavour
excitation frequences, in better agreement with data for charm and bottom [18]. It also
leads to some increase of the binding energies of BS [15].

The behaviour of static characteristics of multiskyrmions and flavour excitation fre-
quences shown in the Table is similar to that obtained in [19] for toroidal configurations
with B = 2,3,4. The flavour inertia increases with B almost proportionally to B. The
frequences wr are smaller for B > 3 than for B = 1.

4. The terms of the order of N; ! in the Hamiltonian, which depend on the angular
velocities of rotations in the isospin and the usual space and which describe the zero-
mode contributions are not crucial but important for the numerical estimates of spectra
of baryonic systems.

In the rigid oscillator model the states predicted do not correspond to the definite
SU(3) or SU(4) representations. How this can be remedied was shown in [14]. For
example, the state with B = 1, |F| = 1, I = 0 should belong to the octet of (u,d, s), or
(u,d, c), SU(3) group, if N, = 3. .

Here we consider quantized states of BS which belong to the lowest possible SU(3)
irreps (p,q), p+2¢ =3B: p =10, ¢ =3B/2foreven B,and p =1, ¢ = (3B — 1)/2
for odd B. For B = 3, 5 and 7 they are 35, 80 and 143-plets, for B = 4, 6 and 8 — 28,
55 and 91-plets. Since we are interested in the lowest energy states, we discuss here the
baryonic systems with the lowest allowed angular momentum, i.e. J =0, for B = 4, 6
and 8. For odd B the quantization of BS meets some difficulties, but the correction to
the energy of quantized states due to nonzero angular momentum is small and decreases
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with increasing B since the corresponding moment of inertia increases proportionally to
~ B?. Moreover, the J-dependent correction to the energy cancels in the differences of
energies of flavoured and flavourless states which we discuss.

For the energy difference between the state with flavour F' belonging to the (p, g) irrep,
and the ground state with F = 0 and the same angular momentum and (p, q) we obtain:

- prp-—1 (urB —1)(ur.B — 2)
= BEBC (1+1) - To(T, + 1)} + Ir(Ip+1),
AEB’F |F|UJF,B+ 4#’F,B@F,B[ ( ) "'( T )] 4#%’B®F,B F( F )
(12)

T, = p/2 is the quantity analogous to the “right” isospin T, in the collective coordinates
approach [9,10], and T, = Iyy — Ip. Clearly, the binding energy of multiskyrmions is
cancelled in Eq. (12). For the states with maximal isospin I = T, + |F|/2 the energy
difference can be simplified to:

AEBF=|FI[WFB+T KF.B (IF’+2)(P‘F,B—1)2}

13
4uF, B®F B 8OFp 1% B 13)

This difference depends on the flavour moment of inertia but not on ©7. In the case of
antiflavour excitations we have the same formulas, with the substitution 4 — —u. For
even B, T, = 0, for odd B, T, = 1/2 for the lowest SU(3) irreps. It follows from (12)
and (13) that when some nucleons are replaced by flavoured hyperons in BS the binding
energy of the system changes by

3(ur1 — 1) pre—1  (IF|+2) (#FB—I)Z]
Acs.p = F||wps —wpp - SR g PER L - (14
eg,r = |F||wry —wr,B 8% ,Or 4r 5055 8013 e (14)

For strangeness Eq. (14) is negative indicating that stranglets should have binding energies
smaller than those of nuclei, or can be unbound. Since @ p increases with increasing B
and mp this leads to the increase of binding with increasing B and mass of the "flavour”,
in agreement with [15]. For charm and bottom Eq. (14) is positive for B > 3, see the
Table for the case |F| = 1.

The nuclear fragments with sufficiently large values of strangeness (or bottom) can be
found in experiments as fragments with negative charge Q, according to the well known
relation Q = T35 + (B + S)/2 (similarly for the bottom number). One event of a long lived
nuclear fragment with mass about 7.4 GeV was reported in [20]. Using the above formulas
it is not difficult to establish that this fragment can be the state with B = —S = 6, or
B =T and strangeness S = —3. Greater values of strangeness are not excluded.

As in the B = 1 case [21] the absolute values of masses of multiskyrmions are controlled
by the poorly known loop corrections to the classic masses, or the Casimir energy. And as
was done for the B = 2 states, [16], the renormalization procedure is necessary to obtain
physically reasonable values of the masses. This generates an uncertainty of about several
tens of MeV, as the binding energy of the deuteron is 30 MeV instead of the measured
value 2.23 MeV, so ~ 30 MeV characterises the uncertainty of our approach [16,17]. But
this uncertainty is cancelled in the differences of binding energies Ae shown in the Table.

5. Using rational map ansaetze as starting configurations we have calculated the sta-
tic characteristics of bound skyrmions with baryon numbers up to 8. The excitation
frequences for different flavours-strangeness, charm and bottom-have been calculated
using a rigid oscillator version of the bound state approach of the chiral soliton mod-
els. This variant of the model overestimates the mass splitting of strange hyperons when
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FSB in decay constant Fi is included, but works better for ¢ and b flavours [18]. Our -
previous conclusion that BS with charm and bottom have more chances to be bound re-
spectively to strong decay than strange BS [15] is reinforced by the present investigatior.
This conclusion takes place also in FS case, Fp = F;.

Consideration of the BS with “mixed” flavours is possible in principle, but would e
technically more involved. Our results agree qualitatively with the results of [22] where -he
strangeness excitation frequences had been calculated within the bound state approz.ch.
The difference is, however, in the behaviour of excitation frequences: we have found <hat
they decrease when the baryon number increases from B = 1 thus increasing the binding
energy of corresponding BS.

The charmed baryonic systems with B = 3, 4 were considered in [23] within a potential
approach. The B = 3 systems were found to be very near the threshold and the B = 4
system was found to be stable with respect to the strong decay, with a binding en:rgy of
-~ 10 MeV. Further experimental searches for the baryonic systems with flavour different
from u and d could shed more light on the dynamics of heavy flavours in baryonic : ystems.
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