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In experiments on the 3-decay of polarized neutrons where only the electron and
proton momentum distributions are observed and the vy-radiation is not registered, the
asymmetry factor B of the antineutrino angular distribution cannot be obtained rigor-
ously — the value of B is only estimated on the average by taking into consideration the
expectation (mean) value (B) and the rms deviation AB. The resulting unavoidable am-
biguities in the determination of B amount to several per cent, which is significant for
the present-day experimental attempts to obtain B to very high precision ~(0.1-1)%.

PACS: 12.15.Lk, 13.10.4q, 13.40.Ks

Recently there has been a great deal of interest in high-precision measurement of the
neutron 3-decay characteristics, first, the lifetime 7 {1], and, if the neutron is polarized,
the asymmetry factors A and B, respectively, of the electron [2] and antineutrino [3]
angular distributions with respect to the neutron polarization vector £ The rigorous
determination of the §-decay characteristics =, A, B, ... is well understood nowadays
to be of fundamental importance for the general elementary particle theory (see, e.g.,
Refs.[4-7)).

The electron and antineutrino momentum distribution[4, 5]

dn, .
AW (e, D0 €) = dw iz (g} + 32 {1+ (v Aoy, 0,0) +

+Blgv, g4,¢)(ns€) + algv, g4, s)(nuv)} W

is usually what haunts us whenever we consider the 3-decay process. In Eq. (1) we have
éz
dw = mepw,z,de(dneﬂw), n. = p/p, v=p/e, n, =p,/w,,
where ( stands for the effective B-decay amplitude [4, 5] and ¢,w,, p, p, are the electron
and antineutrino energies and momenta, respectively; a system of units with h = ¢ = 1 is
adopted. But so far as antineutrino registration is unfeasible, Eq. (1), immediately as it
stands, is useless for obtaining the value of B from experiment. Since an experiment for
obtaining the antineutrino angular distribution without registering the antineutrino itself
is expounded thoroughly in Ref. [3], here we only recall that in its ideal scheme, which
is sufficient for our purposes, the registered electron momentum p is directed strictly
along the x axis (see Fig. 1), the at-rest neutron polarization vector £ is also directed
exactly along or opposite the x axis direction, and the proton momentum projection on
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the x axis, P,, is registered in coincidence with the electron momentum p, while the
components of the proton momentum P perpendicular to x are not observed at all, nor
is the vy-radiation. If for a moment we leave aside the y-radiation and neglect the kinetic
energy of the proton on account of its very large mass, the antineutrino energy w,o and
the cosine of the angle between the x axis and the direction of the antineutrino emission
are clearly given by

Wy = A~ €, Yo=cos euz = (—'Pz - Ipl)/wuo, (2)

with the corresponding momentum distribution taking the form

dW*(P;,p) = w*(Py, p),
w*(Py,p) = (g% + 3¢%)[1 + Azv + Boyoz + aygv). 3)

In (3) and hereafter, the value z = + stands for neutron polarization along the x axis and
z = — for the opposite direction. We have appended a subscript 0 on B to stress that it
is the value that would be obtained if the y-radiation were turned off. In the experiment
of Ref. (3], the distribution

dw:xp (Pz r p) exp (PZ-‘! p) dp dP (4)

was obtained. Using Eqs. (1)—(4), for which the vy-radiation has been left aside, one would
infer the equation

Weep(Pz, P) = fo(wso)(1 + zAv) + fo(wio)yo(2Bo + av), (5)

and, consequently, one would arrive at the following expression, in terms of W, (4), for
the coefficient multiplying (n,) = 2y, in Eqgs. (1) and (5):

By zy f [ exp — fo(1 + zAv) ~ anvyOL Jo= (gV +3gA) (6)

Accordingly [3], By = 0.9821 + 0.004.
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However, the experiment of Ref. [3] deals with the 3-decay probability for given P;,p
values, involving y-radiation with all the allowed momenta k. In describing each single
event, the expressions for yo,wyo in (2) will be replaced (see Fig.1) by the following ones:

-P, — - Tw
yo — y(w) = cos Oy, = ——5%—, z = c0s 0., (N
v

G*w,
fo— FW) = T (g% +364) , w0 — ww)=A~e—w,

where w = |k| is the y-ray energy, and ©.,; stands for the angle of the y-radiation direction
relative to the x axis. It is natural to estimate the quantity B in (1) via the expectation
value (B) expressed in terms of the expectation values (yf), (f), which are to be calculated
by averaging f(w), f(w)y(w,z) over the momentum distribution W7 (F;, p,k) of the -
radiation accompanying the decay event with given P.,p,z. Each single decay event
with a given k value enters into the experimental W5  (P,, p) value with its own weight,
its own probability W (P, p, k)dk, which is the probability of y-radiation with a given
momentum k accompanying 3-decay with the given P,, p values. Consequently, Eq. (5)
is replaced by a new relation in which the experimentally observed quantity WZ,,(P:, p)
is equated to the B-decay probability averaged with the weight W7 (P,, p, k), namely:

Wi (Pe,p) = J W (P, p, k)f(w}[;jv‘;fi(t; + ;fllz))‘y(w, o tewwa) o

= (f)*(1 + z4v) + (f)*(2(B)* + av),

where the familiar notation of averaging is introduced:

J9 ¢ dw? 22 deF(Pe,p,w,2) [o7 dgWE(Pe, P, w, 2, )
J&7 dw? [ da [27 dgWZ(Ps, p,w, 2, 6)

Here the limits z;, x; emerge merely from kinematics of the process under consideration,
the quantities to be averaged, f(w), f(w)y(w, z), being independent of the azimuth ¢ of
the y-radiation (see Fig. 1). _
Thus we have derived Eq. (8) to replace the former equation (5). In the absence of an
immediate one-to-one correspondence between the distribution (8) involving (B)* and the
antineutrino angular distribution (1) involving B, the quantity (B)* is seen, nevertheless,
to be relevant for our goal, which is to estimate, on the average, the value of B in (1):

(F)Y*(Peyp) =

- (9)

(B)* = 2[(1 + zAv)(fo ~ (f)*) + yofolav + 2Bo))/(yf)* — zav. (10)

To judge with full confidence the accuracy and even the very validity of the aforemen-
tioned estimation of B in terms of (B)*, let us visualize the distributions of the quantities
f(w), f(w)y(w, z) around their mean or expectation values (f), (fy), that is, let us evalu-
ate the rms deviations of f(w), f(w)y(w, z). In short, in addition to the quantities (f), {fy)
themselves, we must calculate the mean square deviations of f(w), f(w)y(w, z) from their
expectation values (f), (fy) (i.e., the variances of these quantitites):

((AN2* = {27 = (N, (AN = (W) - (W),
(A(fyf)* = {fof) = (- Wwh*. (11)
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Fig.2. The yo-dependence of the quantity ((B)* —  Fig.3. The same as in Fig.2, but for the quantity

By)/Bg, in %, at the value ¢ = 1MeV. The solid AB*?/{B)*
line stands for z = +, the dashed line for z = —

Accordingly, the attainable accuracy
AB* = /((AB?)?) = \/{B?*)* — ((B)*)?

of the B value estimation (10) is expressed in the usual way (see, for instance, [8]) in
terms of the quantities (11) and the derivatives

a(B)*/0(f)*, O(B)*[d(yf)*.

Thus the ambiguities in estimating the true value of B from the expectation values
(B)* stem from the difference between the quantitites (B)* and (B)~ themselves and
from the emergence of an rms deviation AB*.

Upon integrating over d¢ in (9), the y-radiation distribution takes the form{9)

27

wzd(t)dxdpdpz d¢W—; (Pz, Ppw,Z, ¢) =
0

eG 8 1 £y 1 /m\?
(2\/—) (27I')7 Ez' [1 — IE'U]z ; (‘J) ddedP,:dp X
x{(1 - 2*)ev[v(e + w)(g¥ +39%) +y(w + v’e) (g} — g2)) +
+w?[(g% +34%) + yz(gh — g2)](1 — vz) +
+22g4[(1 — z)ev[(gv — ga)(v?e + w) + (gv + ga)vy(e +w)] +

(1 - v2)l(ev - ga)e + (ov + gl o= 2lmEEBl gy

It should be noted that it is the presence of the quantity o in Eq. (12) that governs the
true infrared (w—0) behaviour of W7 (P, p,w,z,¢) (see Refs. [4, 9, 10]).

It is pertinent to present the ca.lculated quantities (B — By)/By, AB*/(B)* as
functions of the electron energy ¢ and of the quantity yo (2), as was done in Ref. [3).
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Here the dependence on ¢ proves to be rather smooth, whereas the dependence on yo,
in contrast, becomes strong, as is seen in Figs. 2 and 3, which typify the results of the
calculations.

The expectation value (B)? is relevant for ascertaining the true value of B in (1) when
the distributions of the values of f(w), f(w)y(w,z) are sharp enough, that is, when, at
given P,,p, the ratios Af/(f), A(fy)/(fy) and, hence, AB/(B) turn out to be substan-
tially smaller than (i.e., negligible in comparison with) the desired accuracy of determi-
nation of B [3). The magnitude of the ratio AB/(B) sets the bound on the precision of
obtaining the value of B (1) from the processing 3] of the experimental data (4). Yet
when, at certain P, p, the distributions of f(w), f(w)y(w,z) around (f), (fy) turn out
to be so smoothed that Af/(f)~1, A(fy)/{fy)~1, and, consequently, AB/(B)~1, there
will apparently be no reason et all to estimate the quantity B (1) in terms of (B)*. In
that case, the antineutrino kinematics, the antineutrino angular distribution (1), can’t be
reconstructed from the experimentally observed [3] distribution (4) even on the average.
Of course, it is no wonder that the values in Figs. 2 and 3 increase sharply as yo tends
to zero, yo — 0, the physical reason for such behaviour of (B), AB being quite visible.
Indeed, when yo =~ 0, that is |p| + P,~0, the inclusion of the term zw in y(w,z) (7)
gives rise to appreciable values of the ratios (y — yo)/y0, Ay/(y) at any w, even a very
tiny one. In this case, any vy-radiation absolutely destroys the antineutrino kinematics
which would hold in the absence of electromagnetic interactions. In turn, the values of
((B)* — By)/Bo, AB*/(B)* increase significantly and can even get arbitrary large at
|yo|—0. Of course, under such circumstances one can say nothing about the expectation
(mean) values themselves. By processing all the experimental data beyond these small
|yo| values, we can claim to acquire a semiquantitative estimate of B to an accuracy of
a few per cent. At best, with allowance for the events with |yo| ~ 0.8-1.0 only, an accu-
racy better than 1% is thought to be attainable in recovering the antineutrino asymmetry
coefficient B.

Thus there is, alas, no justification for glossing over the effect of y-radiation on the
determination of B and touting the achievement of very high accuracy ~ 0.4% in the
measurement of B, as proclaimed in (3].
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