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The leading correction-to-scaling exponent w for the three-dimensional dilute Ising
model is calculated in the framework of the field theoretic renormalization group ap-
proach. Both in the minimal subtraction scheme as well as in the massive field theory
(resummed four loop expansion) excellent agreement with recent Monte-Carlo calcula-
tions (H.G.Ballesteros et al., Phys. Rev. B58, 2740 (1998)) is achieved. The expression
of w as series in a /é-expansion up to @(e?) does not allow a reliable estimate for d = 3.

PACS: 11.10.Gh, 61.43.-j, 64.60.Ak

From renormalization group (RG) theory one knows that in the asymptotic region the
values of the critical exponents are universal and scaling laws between them hold. There
the couplings of the model Hamiltonian describing the critical system have reached their
fixed point values. In the nonasymptotic region deviations from the fixed point values
are present. They die out according to a universal power law governed by the correction-
to-scaling exponent w. E.g. for the zero field susceptibility the approach from above to
the critical temperature T, is characterized by the so-called Wegner expansion [1]

x >~ Tor™7 (1 + Ty 7Y 4 Tpr®/v 4 |, ) , (1)

where 7 = (T — T.)/T. and the I'; are the non-universal amplitudes. v and v are the
asymptotic values of the susceptibility and correlation length critical exponents. The
smaller the exponent w, the larger is the region where corrections to the asymptotic
power laws have to be taken into account. Being even further away from the fixed point
it is necessary to consider the complete non linear crossover functions. This exponent
has been calculated with high accuracy for the O(n) symmetric model (in particular for
the 3d-Ising model, see Table), but is much less known for the corresponding diluted
model. As a result of a 3d-calculation of the field theoretic functions within the minimal
subtraction scheme [2] and a thorough analysis of different methods for calculating critical
exponents [3], we are able to present accurate values of the correction-to-scaling exponent
for weakly diluted quenched 3d-Ising model.

The implication of quenched dilution on the critical behavior is a long-standing prob-
lem attracting theoretical, experimental and numerical efforts. In the 3d-Ising model
quenched disorder changes the asymptotic critical exponents compared to the pure ones
[4, 5]. In principle this statement should hold for arbitrary weak dilution. But in order
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to observe this change one should approach the critical point close enough. The width of
this region turns out to be dilution dependent.

In particular Monte-Carlo (MC) calculations of the critical exponents in the dilute
3d-Ising model are more difficult to perform than for the pure model since they need
much larger sizes of lattices [6]. Even then the exponents were found to be non-universal
and varying continously with dilution, i.e. they were effective ones [7]. It became clear
that a correction-to-scaling analysis is unavoidable and indeed universal exponents were
found [8]. Without it one still obtains concentration dependent effective exponents [9)].

Values of correction-to-scaling exponent w as obtained from different methods in dilute
and pure 3d-Ising models

Method Dilute Pure

scaling field 0.42(10] 0.87(10]

€ expansion see text 0.814 + 0.018[23]

massive RG,d =3 0.372 0.799 % 0.011[23]

min. sub. RG,d=3 | 0.390 0.791

. 0.8 + 0.1[16);

MC 0.37 £ 0.06[8] | 0.8 — 0.85[24};

0.87 + 0.09[25]

For the accuracy of our values see text and Figure

The value of the correction-to-scaling exponent w found in MC calculations from an
analysis invoking the first correction term in (1) turned out to be [§]

w=0.37£0.06. (2)

Thus it is almost half as large as its corresponding value in the pure model (see Table)
and this smallness of w in the dilute case explains its importance for an analysis of
the asymptotic critical behavior. It is therefore highly desirable to have an independent
quantitative theoretical prediction for the value of the correction-to-scaling exponent in
the dilute system.

In theoretical calculations the value of w found by scaling field RG [10] is w = 0.42.
So far field theoretical RG studies mainly concentrated on the asymptotic values of the
leading exponents. Correction-to-scaling exponents have been calculated within massive
RG in two loop approximation in Ref. [11] (w = 0.450) and within the minimal subtraction
scheme in three loop approximation in Ref. [12] (w = 0.366). Here, we improve this value
in the massive RG scheme up to four loop order with the result

w = 0.372 3)

in excellent agreement with (2). In the minimal subtraction scheme we obtain w = 0.390
remaining with in the bandwidth of MC accuracy.

The critical behavior of the quenched weakly dilute Ising model in the Euclidian space
of d = 4 — ¢ dimensions is governed by a Hamiltonian with two couplings [13]:

n
H(g) = / d"R 1 [|V¢a|2 +miga] - (Z ¢°) % Z @
a

in replica limit n — 0. Here ¢, are the components of order parameter, ug > 0,v9 >0
are bare couplings; my is bare mass.

We describe the long-distance properties of the model (4) in the vicinity of the phase
transition point using a field-theoretical RG approach. The results presented in this paper
are obtained on the basis of two different RG schemes: the normalization conditions of
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massive renormalized theory at fixed [14] d = 3 and the minimal subtraction scheme [15].
The last approach allows both fixed d = 3 calculations [16] as well as an e-expansion.

In the RG method the change of the couplings 4 and v under renormalization is
described by two S8-functions

Buluy) = (gg)o Bu(u,v) =u(§§)o, (%)

where u corresponds to the mass in the massive field theory approach and to the scale
parameter in the minimal subtraction scheme. The subscript in (5) indicates that the
derivatives are taken at constant unrenormalized parameters. The G-functions differ for
different RG schemes and in consequence the fixed point coordinates u*, v*, defined by
the simultanious zeros of both 3-functions, are scheme dependent. The asymptotic critical
exponents as well as the correction-to-scaling exponent do not depend on the RG scheme
and take universal values.

The correction-to-scaling exponent w is defined by the smallest eigenvalue of the matrix
of derivatives of the S-functions

0By 9B
du oy Q
9B, 9By

ou Ov

taken at the stable fixed point. For the stable fixed point both eigenvalues of this matrix
have a positive real part.

Our results for the correction-to-scaling exponent are based on the known high order
expansions for the functions 8, and 3,. In the massive scheme they are known in four loop
approximation [17]. In the minimal subtraction scheme one can obtain these functions
in five loop approximation in the replica limit from those of a cubic model {2]. In the
limiting case of the pure model only the coupling u is present. The corresponding -
function results from putting v = 0 in 8, (u,v) and the correction-to-scaling exponent is
simply the derivative 98, (u,0)/8u taken at the stable fixed point u*. Note that for the
pure model the G-functions in the massive scheme are known in six loop approximation
[18] and the five loop results for the RG functions in the minimal subtraction scheme [19)
agree with those recovered from Ref. [2].

It is known that the series obtained in the perturbational RG approach are at best
asymptotic (for the dilute model see however Ref. [20]). An appropriate resummation
procedure has to be applied to the 8 functions in order to obtain reliable information.

-The choice of the resummation procedure depends on the information about the high
order behavior of the expansion series. This information is not available for the case of
the B-functions (5). In this situation we have used in our analysis several resummation
procedures. In particular we tried Padé-Borel resummation {18] for resolvent series [21]
as well as Chisholm-Borel resummation technique [11, 22]. Simple Padé-tables were
analyzed as well. Then, special attention was payed to the choice of the fit parameter
(entering Borel-Leroy transform). We observed the standard 'benchmarks’, namely fastest
convergence of the perturbation theory results, reproductivity of the best accuracy known
for exponent values of the pure model. Moreover different forms of the approximants were
tried and analyzed on the base of a model function [3].

The steps which we follow in the calculation of the correction-to-scaling exponent w are
the following: First the -functions (5) are resummed and the system of equations for the
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fixed points, B, (u*,v*) = 0, By(u*,v*) =0, is solved. Then the matrix of derivatives (6)
is calculated for the resummed B-functions. The stability of the fixed points is checked.
The fixed point with both u* # 0 and v* # 0 is the stable one at d = 3 and the smallest
eigenvalue gives the desired correction-to-scaling exponent. Note that the eigenvalues
might be complex, in this case both have the same positive real part defining w.

05 T

MC

04 massive RG

, Correction-to-scaling exponent w of the
s 2r 0 4  dilute 3d-Ising model in increasing num-

ber of loops. Open square with error bar
,~ -minimal subtraction RG shows the region of accuracy of the MC
02} ; 4  data [8]; full squares: our values in the
"/ minimal subtraction RG scheme; full di-
amonds: our values in the massive RG
scheme

0.1 L - 1
2 3 4
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In Figure we present our results for the exponent w obtained in successive orders of
perturbation theory in number of loops. To perform the resummation the Borel trans-
forms of the truncated lth order perturbation theory expansion for the g-functions were
presented in the form of [(I — 1)/1] rational approximants of two variables {22]. This form
of rational approximants appeared to give the most reliable results. The four loop results
for the exponent w obtained in both RG schems are given in the second column of Table.
The behavior of w in succesive numbers of loops shown in Figure. The uncertainty in
w may be estimated by taking the difference between the four loop and the three loop
result. It gives in all cases the typical accuracy of lower then 10%. Although both RG
schemes lead to comparable values for w, the convergence of the values in the massive
scheme is much faster. Note that the result for w combined with the corresponding four
loop results for the asymptotic critical exponents [17, 26] confirms the conjectured in-
equality, —vw < a < 0, for the random models critical exponents involving the specific
heat exponent a [27].

As it was noted above five loop results for the minimal subtraction scheme are available
[2]. In particular applying the resumation scheme [28] to the pure Ising model case,
v = 0, we get the following values for w in increasing number of loops starting from two
loop: w = 0.566; 0.852; 0.756; 0.791. This leads to an improvement in accuracy of the
previously calculated d = 3 five loop value [16] (see the third column of Table).

The degeneracy of the dilute Ising model 3-functions on the one loop level leads to the
J/z-expansion [13, 29]. For the critical exponents this expansion is known up to O(e?)
[30]. Starting from the five loop results of Ref. [2] in the replica limit we get the following
expansions [31] for the eigenvalues w; and w; of the stability matrix (5) in the fixed point
u #0, v #£0:

wy = 2¢€ + 3.704011194¢%2  + 11.30873837¢2, (7)
w, = 0.67292658501/2 — 1.925509085¢ — 0.5725251806 %/ — 13.93125952¢2.
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From naively adding the successive perturbational contributions one observes that already
in three loop approximation (~ €) ws becomes negative and therefore no stable fixed
point exists in strict 1/e-expansion. Even the resummation procedures we applied above,
do not change this picture [26]. This can be considered as indirect evidence that the /-
expansion is not Borel summable, as may be expected from Ref. [20]. A physical reason
might be the existence of the Griffith singularities caused by the zeros of the partition
function of the pure system [32]. The fixed d approach, both within the massive [14] and
minimal subtraction [15, 16] schemes, seems to be the only reliable way to study critical
behaviour of the model by means of RG technique.

We acknowledge valuable correspondance with Alan J. McKane and Victor Martin-
Mayor.
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