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A novel mechanism for the sign-change of the flux flow Hall effect is
proposed. The dependence of the superconducting thermodynamic potential 1,
on the chemical potential u produces the topological contribution to the Hall
conductivity §ozy = —(80,./8u)ec/B, which may lead to a double sign-change of
the Hall effect as a function of temperature.

The sign-change of the Hall effect in the mixed state of high temperature
superconductors (HTSC) is the most puzzling phenomenon in the physics of
magnetic properties of these materials [1]. In spite of the numerous attemps to
explain this anomaly even the origin of the sign reversal in the Hall resistivity
remains unclear [1]. The sign-change of the Hall resistivity has also been observed
in conventional superconductors and thus is not a pecularity of the HTSC [1, 2].
Comparing experimental data for different materials, Hagen et al. [1] have argued
that the sign-change is an intrinsic property of the vortex motion, and that the
sign reversal occurs in the range of parameters where the transport mean free
path [ becomes of the order of the vortex core size &.

In this letter we propose an explanation of the sign reversal in the Hall effect.
We present a coherent phenomenological derivation of the Hall conductivity oy,
consistently accounting for the scattering of normal excitations, o7, [3], as well as

for a topological contribution a;y related to the dynamics of the order parameter,

Ory =0q, — 69“/6/"80 ec/B. )

Here, Q,.(r) is the superconducting part of the thermodynamic potential density
depending on the distance r from the vortex core and u is the chemical potential.
The second term U;y turns out to reproduce the result obtained previously
from the Time Dependent Ginzburg Landau equation (TDGL) [4, 5]. It is this
contribution which gives rise to a double sign-change in the Hall effect. The
paper is organized as follows. First we study a model uncharged superconductor
and find the additional topological contribution o}, = —énec/B, where én is the
difference between the carrier demsity at the center of the vortex core and that
far outside. Then we account for Coulomb screening and show that, although the
density modulation is suppressed, it does not effect the topological term in the
Hall conductivity {1).

In order to describe the Hall effect one has to find the transverse force
experienced by the vortex moving with velocity v, under the applied transport

current jr. There are two contributions to the transverse force: The first one arises
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from the nondissipative momentum transfer from the moving vortex to infinity.
This contribution consists of the Magnus and Jordanskii [6] forces. The second
contribution stems from the momentum transfer from the vortex to the normal
excitations in the vortex core. The subsequent absorption of this transferred
momenium by the thermal hath dune to scattering of normal quasiparticles leads
to dissipation and the longitudinal Bardeen-Stephen friction force.

In order to undersiand both contributions let us derive the dynamic term in the
adiabatic action for a moving vortex. The effective action for a superconductor
depends on the phase of the order parameter x only through gauge invariant
combinations: S = S5(Vyx — 2eA/he, Ox/0t + 2ep/h), with A and ¢ the vector and
scalar potentials, respectively. Variation of the action with respect to the phase
provides the current conservation law:
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with the current density j = cdS/6A(r,t). The continuity equation Vj/e+8n/dt=0
for the particle current implies that the effective action has to contain the
topological term (n is the particle density)

- n oy
S, —h/dthiE. (3)
The factor 1/2 is due to pairing and is absent in a superfluid Bose sysiem.
This topological term is irrelevant if n=const and x is single valued, but in the
presence of a vortex it is just the term in the action determining its dynamics.
For simplicity we consider the 2D case. Expressing the phase in the presence of a
vortex as a sum of a singular O(r — R,(t)) = arg(r — R, (¢)), (R.(t) is the vortex
position) and a regular comtribution, x = &(r -- R.(¢)) + xr(r,t), and taking only
the singular contribution into account, we obtain

S¢= g J/ d?rdt nVOR,, = / dta(R,)v,. (4)

The quantity a(R,) =2 fd’rn(r — R,)VO(r — R.) has the meaning of a ‘vector
potential’ of a fake constant magnetic field. To see this, calculate

Vxa= g jJ AVOdl = 7h(nos — no), )

where we have replaced the surface integral by the two contour integrals at infinity
and around r=R,, with n. and 7o being the particle densities far outside the
vortex core and on its axis, respectively. This term in the action produces the
transverse force

Fi =nh(ne — no)z X vy, {6)

analogous to the Lorentz forced experienced by a particle moving in a magnetic
field [7] (the unit vector z is orthogonal to the plane). Note that this force is
independent of charge and is not of electromagnetic origin.

Based on a similar Berry phase type argument, Ao and Thouless {8] arrived at
the conclusion that the relevant demsity in Eq. (6) is n, rather than n. This is
correct only for the Galilean invariant case, where the density n and the superfimid
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density n, coincide, and the force (6) is just the Magnus force. In general there
are two major differences between (6) and the Magnus force; first, n,, is the total
density rather than the superfluid one and thus this part is the sum of Magnus
and Jordanskii [6] forces. Second, and most important, there is an additional term
proportional to the density at the vortex axis. In our derivation of Eq. (5) we
have excluded the vortex axis from the integration, since nV® has a singularity
there if no#0, and our adiabatic action is not applicable close to the core axis.
The fact that ny 0 means that not all the particles participate in the superfluid
motion and there are normal excitations inside the core [9]. As the Magnus force
arises from the nondissipative transfer of momentum from the vortex to infinity,
the other term nghv, xz is due to the transfer of momentum from the condensate
to the normal excitations inside the core. This term is just the term obtained by
Volovik [10] who, starting from BCS theory, derived an effective action describing
the transfer of the momentum from the condensate to the fermionic modes in the
vortex core. The subsequent absorption of this momentum by the heat bath due
to impurity scattering leads to the Bardeen-Stephen dissipation. Thus the hidden
assumption in the derivation of Eq. (6) is that impurity scattering is so strong
that all the momeni{um transferred to the normal excitations is absorbed by the
heat bath. However, for BCS superconductors we have ny — no €« n, and the
Magnus force is compensated almost completely [10]. In this case the impurity
scattering should be considered in more detail. Such a calculation has been done
long ago [3] without accounting for the difference between n., and ng. Below we
take into account both effects simultaneously and show that their combination can
lezd to a sign-change in the Hall conductivity.

An accurate microscopic treatment of the scattering processes in the adiabatic
action approach will be published elsewhere [I11]. Instead, we consider a simple
phenomenological model similar to that of Noziéres and Vinen [12], but account
both for impurity scattering and changes in density. We model the core as fully
normal with a carrier density ng and a sharp boundary at a radius r, >~ £. The
superconducting material has a density ny {13, 12]. We denote the velocity of
the normal carriers inside the core in the laboratory frame as v, and consider the
transfer of the momentum in the system at T « T,. In the presence of a transport
current jp, electric as well as magnetic fields, the comservation of momentum in
the electron system, dP/dt=0, reads

v X Bfe+ ngeE ~ mnov f(B/Hc2}/T=0. i(7)

The first two terms describe the momentum transfer due to the Lorentz- and
electric field forces. The third term accounts for impurity scattering {r and m
are the transport fime and the effective mass). For 3 > H.,, j(B/H.) =1
ey, =}y, and Eq. {7} gives the Drude formulas for the longitudinal and
Hail conductivities. For B « H., impurity scattering takes piace only in the
wortex core and f o« B/H.. I ng =n, the iransport current jr is equai to
npev, and we obtain werz X {v_ - v.}=v, [12, i4], where we have introduced
wy =eB/mef(B/H:) {wo >~ A%fe, at B « H,s in ciean materials). Solving this
equation, one finds

_ woT {wo'r}z

= m;)—zz X vy + mvm (8)
which coinsides with the result of the microscopic calculations in the relaxation
time approximation [3]. If, however, ng ¥ n,, then ngev. is not equal to j,. In the

Ve
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reference frame moving with the vortex the current conservation gives ngev, =jg.
Going to the laboratory frame we have ngev, = j; + édnev,, where én =ng — ny.
Inserting in (7) one finds that the equation for v, (8) remains unchanged and

. WoTZ X Vy (woT)? _én
I eno[l + (wot)? + (1 + (wor)? no)v"]’ ®)

where the two terms on the r. h. s. map to the Bardeen-Stephen longitudinal
conductivity and the Hall conductivity. The én term, rewritten as the transverse
force, is just the term derived in Eq. (6) from the adiabatic action. The transverse
force can be rewritten as wh[ne — no/(l + (wo7)?)]ve X 2, where the first term is
the Magnus force and the second is the force due to impurity scattering cancelling
the Magnus force almost completely in a conventional situation [3, 10]. Eq. (9)
is valid at T « Tc. When T — T, Eq. (8) holds as well and describes the
transfer of momentum of the quasiparticles with € < A. Quasiparticles with ¢ > A
give the normal state contribution to the Hall conductivity. Thus in Eq. (9) no
should be multiplied by the factor g(A/T), where the function g{z — c©) — 1 and
g(z = 0) = z (see [15]). From Eq. (9) we obtain the Hall conductivity

_mngec  (wor)? bnec . o
7" "B T4 (wr)? B +oz(1-9). (10)

The above discussion refers to a model uncharged superconductor where
bn/n ~ (Afer)? [10]. In real superconductors, Coulomb screening suppresses
inhomogeneities in the charge density, and the total charge of the vortex becomes
zero. Below we show that screening does not change the value of the Hall con-
ductivity, though the latter cannot be expressed any more in terms of the density
difference én. In order to account for screening, we supplement the Lagrangian
L,. by the Coulomb term, L =L, .+ L¢, with

Lo =g [(@OB@E)(-ae(a) (1

and Ey(q) is the Fourier-component of the longitudinal electric field, Ey(r)=-V¢.
Here, €(q) is the dielectric function with ¢(g — 0) =1+4(rpq)~2, rp is the screening
length 75, usually rp, € £o. The electric potential around the vortex is determined
by the equation 6L/84(r) = —ebii(r) + (#/r2 — V23¢)/4x = 0, whereas the charge
density ebn = —V2%¢/(4x) = eéfi — ¢/(47xr2), and we have introduced for future
convenience the notation eén(r) = —6L,./6¢(r). In the weak screening limit with
ro > ¢ we find én(r) = 67i(r), whereas for r, < £ the density is almost constant
én(r) ~ §#(r)(ro/€)? ~ no(A/es)* [16], and ¢(r) = 4xr2éfi(r). The key point is
that the Hall conductivity can be expressed via the value 67 = §7(0) which does
not depend on screening. This follows from the fact that the Coulomb part of the
Lagrangian Lc depends upon the longitudinal electric field only, and thus does not
contain a contribution from the singular vortex-induced phase x,(r)=0©(r —r,.).
Therefore the ‘topological’ contribution to the Hall conductivity is determined
by the effective action Si, Eq. (3), with n(r) replaced by §7i(r), and the result
Eq. (10) is recovered up to the replacement of én by é7i = —80Q,./0u |. In leading
order of (T. — T), 67i can be expressed via experimentally accessible quantities:

_HX(T) 8In(T, - T)

6= 4x u

(12)
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We will show now that the 67 term in the conductivity we found above is just
the term which has been obtained from TDGL [4, §5]. We follow the approach of
[17] where it has been proposed that the imaginary part of the relaxation time can
be obtained from the dependence of the transition temperature T. on the chemical
potential g. The first term in the GL thermodynamic potential is modified to
Q,c = —a(T. + e¢dT. /0~ T)¢*¢ + .... Introducing the gauge invariant combination
(2e¢ —i8/3t), one obtains the imaginary part of the relaxation time in the TDGL
[17, 5], 72 = —(a/2)8T./0u. Without Coulomb interaction the change in density
can be obtained in the same way as before: én(r) = —89,./0u = const — 2v2|(r)|2.
The én contribution to the Hall conductivity in Eq. (9) coinsides with the result
of {4, §] if the numerical parameter § (—a: in notation of [4]) is equal to 1,
corresponding to the TDGL parameter u € 1 [5]. For large values of v the analysis
of [4, 5] gives a similar result but with an additional coefficient of order unity
in front of the ‘6n’ term. In these papers the condition of local electro-neutrality
(Vi=0, i. e, 6n(r)=0) has been imposed in order to account for Coulomb
screening. Actually a consistent treatment of Coulomb effects requires to add a
term ¢2/r% to the GL free energy and to allow for local density variations. The
microscopic calculation for superconductors with paramagnetic impurities [18] shows
that these numerical corrections to the ‘67’ term become small for low enough
concentration of paramagnetic impurities.

The effect of the vortex charge on the Hall effect was recently considered in
[19]. Although the treatment of the static charge distribution in the vortex core
is the same as ours, the transverse force and the Hall conductivity found in [19]
are smaller by a factor ~ (r5/€)2 < 1 and have an opposite sign as compared
to our Eqs. (6;10), explicitly contradicting the well-known result for the Magnus
force in the Galilean invariant case where no = 0.

The crucial point in the discussion of the experiments is the sign of 4.
Estimating 67/n =sign(67)(A/e,)? and wo=A%/e, € 77! one arrives at

ngec A?

Ogy = —— —-
v B ¢

[((AT)%g — sign(67)] + o3, (1 — g). (13)

The new term we have found is important in the dirty case A7 <1 and can lead
to a sign-change if 67i > 0 (the carrier density in the core is larger than outside).
Let us consider this case in more detail in an application to HTSC. In these
materials A7 > 1 at low temperature and Ar — 0 at T,.. Note that what enters in
Eq. (6) is A(T) rather than A(0). Thus at low temperatures we can neglect the
én contribution and the sign of o,y is positive (as in the normal state). As the

temperature approaches T, A3/2’r/Tcl/ 2~1 and Ozy becomes negative. At high
fields the normal state Hall conductivity becomes important and the Hall effect
changes sign back to the normal value at B ~ H(T)/A7 if Ar> 1. If A(T)r < 1,
the second sign-change happens close to Ho(T) since the ‘67’ contribution goes
to zero o (Hcy — B) [5]. These are just the two sign-changes observed in Bi-
and Tl- based materials. In 90 K YBCO the low temperature sign-change back
to the nmormal sign is usually not observed since p;, is unmeasurably small due
to pinning. However, in those experiments where pinning was suppressed either
by a high current [20] or by high frequencies [21] the second sign-change seems
to be observed at low temperatures. The temperature dependence of the Hall
conductivity (10) is in very good agreement with the data by Samoilov et al.
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[22], who found for TBCCO that the B~ !-term in the Hall conductivity changes
sign around 83 K and is o (T, — T) at higher temperature.

In Ref. [23], Hall angle evidence for the superclean regime in 60 K YBCO
has been reported. In this material the Hall angle changes sign and becomes
large (Op = —1/2) at low temperature. There are two different ways to treat
these data in our scheme. The one taken in (23] is that in 60 K YBCO the
superclean limit is realized with wor 3> 1 and the Magnus force has a ‘wrong’ sign
due to the complicated structure of the Fermi surface. Another possible scenario
is that this material is not superclean but moderately clean, with wor < 1, and
has the same sign of é7i as the 90 K material, but with a larger numerical value
(the 60 K compound is closer to half filling and the dependence on chemical
potential is sharper than for the 90 K compound). To estimate the value of é7i/n
we note that the additional term in the Hall conductivity is —éfiec/B, whereas
the normal state Hall resistivity is o7, = B/nec. Multiplying these two quantities
we obtain an estimate for é7/n. The analysis of the experiments [23, 22] gives
6fi/n ~ 103 for the Tl compound and 0.03 (0.07) for 90 K (60 K) YBCO,
respectively. Thus the difference between these two Y-based materials seems to be
much smaller than between Y-and Tl-based compounds. The experimental data
[23) for the 60K YBCO can be understood under the assumption that at low
temperatures wor ~ éfi/n ~ 0.1 € 1; in that case only the second term in (10) is
important and the Hall angle takes a value of order unity (since the longitudinal
conductivity contains a factor wgr), although the material can still be rather dirty
(note that the 60 K material is believed to be more dirty than the 90 K one).
On the other hand, the 90 K YBCO is expected to have a larger low-T value
of wor and a smaller value of §7i/n (see the above estimate), which makes the
observation of the second sign-change in this material [20, 21] quite natural. The
proposed second scenario seems preferable to us since it does not involve any
ad hoc hypothesis involving a complicated Fermi-surface and suggests a unified
description of both 60 K and 90 K compounds.

In a 3D BCS model, T, depends upon the density of states and increases with
increasing density, leading to a positive 87./9u and thus 7t < 0. A simple example
of a situation with 67a > 0 is a 2D system with a spectrum e; = k%/2m+k*/4m?¢,.
In this case 67 ~ 2A%/eA, with the BCS coupling constant A. The case of
HTSC is complicated by the fact that the normal state Hall effect has a hole-like
sign, although from simple electron counting the Fermi surface should have an
electron-like shape. It would be tempting to relate the 6 term with the doping
dependence of T, via Eq. (12), which would lead to the conclusion that a sign-
change should occur for overdoped material. This is dangerous, however, since in
some versions of RVB-like theories [24] the doping dependence of T, and that of
the superconducting energy away from 7, may have opposite signs.
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