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We present analytical and simulation studies of highly resolved dust fluid flows involving nonlinearly cou-
pled incompressible surface dust vortex modes (SDVMs) and dust zonal flows (DZFs) in nonuniform unmag-
netized dusty plasmas. For this purpose, we use the hydrodynamic equations for the dust fluid and Boltzmann
distributed electrons and ions, and obtain a set of equations which exhibit nonlinear couplings between the
SDVMs and DZFs. The nonlinear equations are then used to investigate the parametric excitation of DZF's by
the Reynolds stresses of the SDVMs. Large scale SDVMs emerge through nonlinear interactions with DZFs,
and they suppress the dust particle transport across the density gradient. By contrast, DZFs possess short
scale vortices with a higher turbulent transport. The relevance of our investigation to the role of coherent

structures in a nonuniform dusty plasma is discussed.

PACS: 52.27.Lw, 52.35.—q

Dust and dusty plasmas are ubiquitous in space and
laboratory discharges [1-3]. In space, dusty plasmas
can be found in accretion disks, supernova remnants,
interstellar clouds, planetary magnetospheres, cometary
tails, and in the Earth’s ionosphere/mesosphere. In lab-
oratory discharges, dusty plasmas play a role in plasma
processing, edge plasmas in magnetic fusion devices, and
in microelectronics fabrication. Dusty plasmas are com-
posed of electrons, ions, and charged micro dust parti-
cles. In most space and laboratory dusty plasmas, dust
grains are weakly correlated since the coupling para-
meter I' (the ratio between average Coulomb interac-
tion energy and the average particle thermal energy) is
much smaller than 1. On the other hand, in dusty plas-
mas with I" > 1, one encounters dust Coulomb crystals
[4], dust micro-bubbles [5], and dust Coulomb balls [6],
which are a manifestation of novel collective processes
in dusty plasmas. Dusty plasmas exist in “liquid” and
“crystalline phases”, as well as in the “gaseous” state
[7]. While enormous work has been carried out to un-
derstand the nonlinear dynamics of this complex plasma
state, there exist a number of outstanding issues and
largely unexplored nonlinear dynamics that need compli-
mentary approaches for a broader universal understand-
ing. With the advent of sophisticated controlled labo-
ratory experiments and computer simulations [2, 8, 9],
we have advanced our knowledge of nonlinear effects
in complex (dusty) plasmas. For instance, recent ex-
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perimental investigations [8, 9] of dust “nanofluidics”
show the formation of dust shear flows at kinetic lev-
els and also measure the dust viscosity. Nevertheless
these experiments, studying the properties of dust fluid
turbulence on a kinetic level, require the knowledge of
energy transfer due to nonlinear mode couplings asso-
ciated with harmonic generation, which is considered
as a generic feature of a fully developed plasma and
fluid turbulence. Moreover, sheared flows and nonlinear
structures are quite common in hydrodynamics [10] and
Martian atmospheres [11] though, their self-consistent
evolution in a two-dimensional (2D) Yukawa system has
not been explored as yet. Our present Letter, therefore,
investigates through fully self-consistent nonlinear fluid
simulations the formation of long-scale flows due to sur-
face dust vortex modes (SDVMs) and dust zonal flows
(DZFs) in nonuniform unmagnetized, dissipative dusty
plasmas. Interestingly, we find that the long-scale flows
in our work are excited across a nonuniform dust den-
sity gradient; a situation encountered most frequently
in numerous laboratory experiments and space plasmas.

Our investigations are based on a model put for-
ward by Hasegawa and Shukla [12], who theoretically
pointed out the existence of incompressible SDVMs in a
nonuniform, unmagnetized dusty plasma. We first dis-
cuss the equilibrium state of our partially ionized labo-
ratory dusty discharges in which collisions between sta-
tionary neutrals with electrons and ions are more fre-
quent than those between electrons and ions. In the
dust particle loaded discharge, one obtains [13] from the
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conservation of the electron and ion fluxes the ambipo-
lar electric field Ey, = D;x~'0n0/0z — Dex 10ne0/0z,
where D; = T;/mjvj, and pj, = e/m;v;, are the dif-
fusion and mobility of the particle species j (j equals
e for electrons, ¢ for ions), e is the magnitude of the
electron charge, T; is the temperature, m; is the mass,
Vjn is the rate of the electron and ion-neutral collisions,
X = HiNio + HeNeo, Nio = Neo + ZdNdo, Nio, Neo, Ndo are
the unperturbed number densities of the ions, electrons,
and dust grains, respectively, and Z; is the number of the
electrons on a dust grain. The vertically upward (along
the z axis) ambipolar electric field Ey, can levitate a
negatively charged dust particle due to a balance be-
tween the electric force (= —ZzeEy,) and the vertically
downward gravity force —mgg, where mgy is the dust
mass, and g is the gravity constant. Nitter [14] has also
discussed the levitation of a charged dust in the plasma
sheath of rf and dc glow discharges where the electric
field Ey, is obtained by solving Poisson’s equation to-
gether with a Boltzmann electron density distribution
and the ion density distribution deduced from the steady
state continuity and momentum equations for collisional
ions.

When the equilibrium is perturbed, one has the pos-
sibility of nonlinear SDVMs in the form of a dipolar
vortex [15] or a chain of vortex [16], which can be as-
sociated with coherent vortical structures in laboratory
experiments [17—-21]. The concept of drift wave driven
zonal flows in a collisional electron-ion plasma (without
dust) was introduced by Hasegawa and Wakatani [22].
When the phase speed (wavelength) of the SDVMs and
DZFs is much smaller than the electron and ion ther-
mal speeds (electron and ion collisional mean free paths
Ve Ti/Ven,in, where Vre(Vr;)) is the electron (ion) ther-
mal speed in dusty plasmas, the perturbed electrosta-
tic forces (g;jneo,ioE1) acting on electrons and ions bal-
ance the corresponding pressure gradient —V P, where
ge = —e, ¢; = ¢, and E; (Pj1) is the perturbed electric
field (perturbed pressure). The dynamics of incompress-
ible (V - v4 = 0) SDVMs and DZFs is then governed
by the dust continuity and dust momentum equations,
namely [12]

0pa/0t +V - (pava) = 0, 1)
and
pa (0/0t +va—nV? +v4-V)vqg=—VP +pagz, (2)

where pg = mg(ngo + ng1), na1(K ngo) is a small
perturbation in the equilibrium dust number density,
vy is the perturbed dust fluid velocity, v4 is the dust-
neutral collision frequency, n represents the kinematic

dust fluid viscosity (typically ~ 1072 — 10~ cm?/s in
laboratory, similar to that of water ~ 10~2 ¢m?/s), and
P, = P.; + Pj; + Py is the perturbation in the equi-
librium pressure. We stress that Eq. (2), in which the
electric force on charged dust grains is eliminated by
using E1 = —(e/Z4ng)V(Pe1 + Pi1), is widely used in
the investigation of collective processes in dusty plasmas
[15]. Furthermore, the effect of dust charge fluctuations
can be neglected [15] since the timescale of our inter-
est is longer than the dust charging period (typically
microseconds for dusty plasma discharges).

Two-dimensional incompressible SDVMs and DZFs
are characterized by the velocity vectors v, = x X
x Vb, (y, z) and v, = % x V), (y, z), respectively. Here,
X is the unit vector along the & axis, which is perpen-
dicular to the z axis, and %, and ¥, are the stream
functions of the SDVMs and DZFs, respectively. Thus,
there exist SDVM and DZF vorticities characterized by
Qs = Vxv, =xV21,(y,2) and Q, = Vxv, =xV2 ¢,.
Letting pg = pdo + pds and v4 = v, + v, in Egs. (1) and
(2), we obtain the governing equations for the SDVMs
in the presence of DZFs. We have

ot

» 0s
g+ R XV V=0, ()

(ﬁmst-v)pds

and

0 . 0pds
<§+Vd—nvz+xxv¢s'v> Vigs +g g;

+(}A( X Vips - V) Vid)z +(§( x Vi, - V) Vi"/"s =0. (4)

where pl, = Opao/0z and pao(2) K pgs- We note that
pdz <K pgs due to insignificant variation of the dust zonal
flows (ZF) stream function along the y axis.

The dynamics of DZF's in the presence of the SDVMs
is governed by

(%—H/d — V2 4+ % x Vi, -V) V31, +Qaye = 0, (5)
where Quve = (X x Vi), - VV24,) and the angular
bracket denotes the averaging over the SDVM pe-
riod. In the absence of the nonlinear interactions,
the SDVMs and DZFs are decoupled. The corre-
sponding dispersion relations, obtained from (3)—(5),
are w? + iw (va+nk3) — Q}k2/(k2 + k2) = 0 and
Q+i (va + nk?) = 0, respectively. Here, w(() is the fre-
quency of the SDVMs (DZFs), ky (k) is the component
of the wavevector along the y (2) axis. The buoyancy fre-
quency squared is denoted by Q% = g8lnpz/0z. If the
equilibrium dust density is proportional to exp(—z/L),
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Fig.1. Time evolution of the SDVMs yields long scale potential flows (left) for which k. is finite and ky = 0. The vorticity
component V1), consequently possesses elongated small scale structures

where L = pgo/plyo is the dust density gradient scale-
size, then Q% = —g/L. We note that the latter is a
positive definite for L < 0. In the absence of dissipa-
tion, we observe the frequency condensation of SDVMs
for k, > k, — 0, indicating the possibility of SDVMs
driven DZFs with short scale structures along the z axis,
as discussed below.

We first consider the parametric excitation of DZF's
by large amplitude SDVMs. For this purpose, we ne-
glect the self-interaction mode couplings in (3)—(5) and
let pgs = po+ exp(Liko-rFiwet)+)°, _ p+exp(iks-r—
twxt), ¥s = Yo+ exp(Like-rFiwpt) +Z+,7 p+ exp(iky -
r —iwyt), and ¥, = pexp(iq - r — iQt), where the sub-
script 0+ (+) stands for the SDVM pump (sidebands),
k. = q+tkg, and wy = Q + wy. Fourier transforming
(3)-(5) and matching the phases, we obtain

.woX X q - ko

Hypp==1i 5] (gkoy+2k10 — 1) Yo+, (6)
and
. X xko-q
Q+iv)p= zT; (K204 — Kitpo-11)
1

(7)
where Hy = wi +i (vg +nk}) we — QFkE, /KL, kL =
= ko, +kix, KL = k1, — k3., and v = vy + nqt.
Eliminating 14 from (7) by using (6), we have the non-
linear dispersion relation

A k- 2
Q + v = wo X2 Kol
qJ_ 2 2
KZ |10
ko, + 2k, — @2 E:ii 8
x (gkoy + 2k7 4 ‘1¢)+_ H (8)

where [0|> = or%o—. For qi < |ko| we ob-
tain from (8) Q(Q+iv) = (|x xko-q|/q}) (gkoy +

7 Iucema B IATDd Tom 82 Bem.3-4 2005

2k2 ))a - ko1 ||, which predicts a purely growing in-
stability (@ = 4v) if the growth rate v > v and
(gkoy + 2k3 y)a - ko < 0. For some typical values, viz
|vs| ~ Cp, |k/ko| ~ 0.1, we have v ~ one tenth of the
dust acoustic wave frequency koCp, where Cp is the
dust acoustic speed [15].

Next, in order to study the dynamics of nonlinearly
coupled SDVMs and DZFs, we develop a nonlinear code
to carry out high resolution computer simulations of (3)—
(5) in a periodic box of length 7 in each directions. The
time integration uses a second order predictor-corrector
method. The spatial resolution is 1024 x 1024 Fourier
modes. All fluctuations in the simulations are initial-
ized with a Gaussian random number generator to en-
sure that the Fourier modes are all spatially uncorrelated
and randomly phased. This ensures a nearly isotropic
initial condition in the real space. We further make
sure that no asymmetry is introduced in the dynamical
evolution by the initial spectra and the boundary con-
ditions. The normalization is as follows; pgs by pdo,
s,z by CpAp, t by w;dl, and the space variable by
Ap = Cp/wpa, where Ap = Cp/wpq is the dusty plasma
Debye radius [15]. Thus, the free parameters in our sim-
ulations are vg/wpg ~ 1072 — 1073, n/CpAp ~ 1072,
AL ~ 0.01 and gA\/C% ~ Ap/L, ~ 0.01, where
L,' = —P;'0P,/0z. In Figs.l and 2 we show the
evolutions of the stream functions and vorticities of the
SDVMs and DZFs, respectively. We see that stream
functions are coherent, contrary to the irregular vortici-
ties. This is an indication of the dual cascade, in which
energy from short scale SDVMs is transferred to large
scale DZFs. It is pertinent to note from Egs. (3)—(5) that
the mode k, ~ 0 cannot be excited in a linear regime in
which this mode is entirely absent from the dynamics.
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Fig.2. The dust zonal flows (DZF) tends to cascade towards shorter length scales that eventually align along the flow direction

Nevertheless, the k, ~ 0 mode, essentially leading to an
asymmetric large scale flows in a real space, is generated
purely as a result of nonlinear interactions among SD-
VMs and DZFs in an inertial range spectral space across
a large equilibrium dust density gradient. More pre-
cisely, in the SDVMs, the energy flows towards smaller
k’s, so that we expect large scale structures, similar to
the modified Navier—Stokes (NS) turbulence. On the
other hand, DZF's are zero-frequency limit of the SDVM
mode; they have very small k, and very large k., so that
the frequency condensation occurs for short wavelengths
(viz.k, > ky) structures. DZFs are excited due to the
Reynolds stresses of the SDVMs. While the Reynolds
stresses possess a tendency of typically generating the
large-scale flows, their time average appearing in Eq. (5)
causes a net nonlinear dissipation of zonal flows. This
appears to be the primary reason why DZF's form short
scales (see Fig.2). The vorticity field of DZFs in Fig.2
appears to be stretched across the equilibrium density
gradient wrapping the small scale dust vortex structures
around in the nonlinear saturated state. The vortices
are trapped in the horizontal sheared flow and prop-
agate along the self-consistent flow across the equilib-
rium gradient. The energy spectrum decays due to dust-
neutral collisions and dust kinematic viscosity at smaller
scales. Figure 3 exhibits a high resolution Kolomogrov-
like spectrum of a fully developed coupled SDVM-ZF
turbulent system. The spectrum of SDVMs is evidently
steeper than that of DZFs in the inertial regime, thereby
indicating the presence of large scale structures in its
spectrum. This is further consistent with Fig.1, which
demonstrates k, ~ 0 flows in the saturated SDVM-ZF
turbulent state. It is to be noted that both the spectra
in Fig.3 are steeper compared to the fully developed 2D

DZF Spectrum

1072 SDVM
Spectrum

104

10+

108k

10! 10 k

Fig.3. Kolmogorov-like turbulent spectra of coupled DZF
and SDVMs system. The spectrum of SDVMs in inertial
range turbulence is more steep than that of DZF due to
the presence of large scale flows that have ky, =~ 0. The
numerical resolution is 1024 x 1024 Fourier modes in a
two-dimensional box

turbulent spectra for enstrophy or energy due to large-
scale structures that condensate the lower Fourier modes
because of inverse cascade processes. The dust density
fluctuations also cascade towards long-scale structures
due to short scale vortex merging. There also exist non-
thermal transport associated with the effective turbu-
lent diffusion (Deg = [y dr(v(y,t = 0)v(y,t +7))) of a
dust particle in large scale ZF structures due to a ran-
dom walk of the macroparticles in enhanced zonal flow
fluctuations. As expected, emergence of large-scale co-
herent flows in SDVMs quench turbulent transport, in
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contrast to that involving random short scale DZFs, as
shown in Fig.4. In nonuniform, nonlinear media without
dust, 2D flows have been explained on the basis of the
NS and the Charney-Hasegawa-Mima (CHM) equations
[23, 24], which have two constants of motion, namely
the energy and enstrophy (squared vorticity). The en-
ergy decays from a source to long wavelength, while
enstrophy flows to shorter scales. Such a dual cascad-
ing, in agreement with the statistical quasi-equilibrium
theory, ensures the formation of coherent vortical struc-
tures (eddies) [25], which are responsible for producing
enhanced transport of fluids and plasma particles. For
unbounded 2D NS turbulence, the conserved quantities
are the kinetic energy E = [;* E(k)dk and fluid enstro-
phy Z = f0°° k?E(k)dk, where Ej, is the kinetic energy
spectrum. For CHM turbulence, the conserved quanti-
ties are the total energy E + A%I and total enstrophy
Z + X’E, where I = [[* k=2E(k)dk and A is a positive
constant.

DDFZ
103 i eff
o SDVM
Deff
10°
i 1 1 1 1 | 1 1 1 1 | 1 1
5 10 tmpd

Fig.4. The effective diffusion coefficient associated with
nonlinear turbulent transport in a coupled SDVM-DZF
system. In agreement with Fig.3, transport is suppressed
due to the presence of large-scale flows in SDVM, while it
has enhanced in short scales DZF's

To summarize, we have presented a nonlinear mech-
anism by which DZFs can be generated on account of
the energy of incompressible SDVMs in a nonuniform
unmagnetized dusty plasma. Specifically, we have pre-
sented a system of equations which shows that nonlinear
couplings between the SDVMs and DZFs occur due to
interactions between the SDVM density fluctuation and
the velocity fluctuation of DZF's, as well as due to the
dust fluid advection in the coupled SDVM-DZF system.
The coupled mode equations are analyzed to show the
existence of the modulational instability, which drives
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DZFs at nonthermal levels. The dynamics of nonlin-
early interacting SDVMs and DZFs reveals interesting
features of dual cascading leading to the formation of
large scale dust vortices. The latter can produce dust
particle transport across the density gradient. In fact,
localized dust grain structures in association with dust
grain transport have been observed in nonuniform lab-
oratory dusty plasma discharges [17-21].
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