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An absorption spectrum of the gas with large Doppler width and soft collisions between
particles is studied. Particles are assumed having a nonlinear dependence of the resonance
frequency on velocity. The shape of the narrow peak in the spectrum resulting from an
extreme point of this dependence is calculated analytically for the first time. Without
collisions it has the characteristic asymmetric shape. Collisions are shown to broaden
the line and change its shape. The profile of probe-field spectrum in a three-level system
with the strong field at adjacent transition is obtained. Components of Autler — Townes
doublet are found to spread and repel each other because of collisions.

PACS: 32.70.Jz, 42.55.Ye, 52.20.Hv

An investigation of the resonant interaction of a gas of particles and electromagnetic
wave is a promising way of studying collision processes in gas [1—3]. Of particular interest
is the case when collisions can be described as diffusion in the velocity space; for example,
particles are ions in plasma or heavy atoms in the buffer gas of light ones. Landau collision
term describes well the spectroscopic effects of Coulomb ion-ion scattering [4]. For some
reason the frequency of exact resonance between the wave and some particle can depend
on the velocity. If this dependence results from Doppler shift then it is linear, the spectral
line shape within the linear approximation in field intensity has been calculated [5, 6].
First nonlinear corrections to the absorption spectrum due to saturation were obtained
[7], too.

Besides the effects of saturation and nonlinear interference, the field of monochromatic
wave splits energy levels of a particle [8]. Consider the interaction of gas with strong and
probe waves resonant to adjacent transitions between intrinsic states of the particle.
Without the strong field the dependence of the resonance frequency for the probe wave on
the velocity is linear due to Doppler shift. If one turns on the field then for each particle
there are two resonances between it and the probe wave. Their positions coincide with
Rabi frequencies which are nonlinear functions of the velocity. However, the computation
of splitting in a system with large Doppler width was done for collisionless case only [9].

Nowadays a challenging task is to gain tunable CW UV coherent radiation. Us-
ing stimulated Raman scattering tunable radiation in Nas, Ne was obtained. The ions
have higher energy levels, so there is hope to reach short-wave radiation by Raman up-
conversion in Ar" [10, 11]. Thus, strong-field effects are interesting for experiment along
with soft collisions.

In the present Letter we study the absorption spectra of a gas of particles with both
soft collisions and nonlinear resonance frequency L r{v), the frequency of the field at which
the exact resonance between it and the particle with velocity v occurs. In Ref.[5, 6, 7]
the linear dependence Qp = kv was considered. Here we examine the nonlinear function
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Qg (v) arisen from the interaction with a strong monochromatic wave. The extreme point
of Qg (v) is of special interest in our consideration. The simplest nonlinearity is quadratic.
If particles are concentrated near velocity vg then one can interpret this dependence as
Taylor expansion of Qg near vp to order (v — vg)2. If for some vg the linear term in
the expansion is equal to zero then it would appear reasonable that the main term in it
is quadratic or gy is constant. In brief, the quadratic nonlinearity seems sufficient to
describe all new effects associated with nonlinearity.

Let us calculate the spectrum of light absorbed (or emitted) by monokinetic beam of
particles with given initial velocity vo throughout its whole time evolution, the so-called
beam spectrum with velocity vo. After that it is possible to find the absorption spectra
for arbitrary velocity distribution. The spectrum is given by the expression

I = %Re ‘/:odt B(t)e ¥, B(t) = <exp (i /:d‘r QR(v(T))) > , (1)

where ®(t) is the correlation function. The width of the beam spectrum is the inverse
time of the dephasing tBl. When the dependence of the resonance frequency Qg is linear
Qr(v) = kv, then correlation function is given by [5, 6]

B(vo,t) = eikvot—Dk2t3/3- (2)

Roughly, the deviation of velocity from its initial value is of the order of Awv(t) ~ v Dt,
then the phase deviation is

t
Ap = A/ dr Qgr(7) ~t- kAv ~ vV DE2t3.
0

The dephasing happens when the latter reaches m, thus the spectrum width or the inverse
dephasing time is of the order of t;' ~ (Dk2)'/3. If the particles decay in time then
one should add il’ to & or multiply ®(t) by e~Tt, where I' is the inverse lifetime of the
particles.

While only the integral of ®(t)e~*! over time is of interest, one can reduce the problem
to simpler one: there is a source of particles with velocity vp and there is a steady-state
distribution for polarization of particles p(v) governed by the equation

2

(i(n — Q) - Dad—) p=6(v— 1), (3)

and the beam spectrum given by the expression Ig(f,v0) = 2Re [ dv p(v).

Let us now consider the case when the dependence of resonance frequency is quadratic
Qr(v) = w+kv+av?/2 if only near vg. If vo = —k/a then the linear shift of the resonance
frequency in change of the velocity vanishes, so the diffusion of phase arises from the
quadratic one

Ap~t. a(A'vA)2 ~ Dat?,

the spectrum width is of the order of t;' ~ (D|a|)/2. This simple estimates are con-
firmed below by detailed calculations. The point v = —k/a, or generally the point where
dQg/dv = 0, can be called a turning point [9, 12], because if you pull the velocity through
it the sign of dQlg/dv (or the direction of g variation) changes.
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Introduce a new variable 2 = a(v +k/a), a = (a/2iD)'/*, zp = 2|y=y, and decompose
p, 6(v — vp) in a series over functions ¢, (z)

—z2/2 00
inl) =0 ) = 3 pugnle), 60— 0) = 3 ¥n(2) e H ),

n=0 n=0

where H,(z) is the nth Hermite polynomial. The quantities p, are found immediately
since all ¥, are eigenvectors of the operator in L.h.s. of (3). After integration over v one
gets

2 e—%0/2 Hzn(zo) 1 o o(B/2-z)r L2
IB(Q ’Uo R Z 22"17.'(2,371—{-23) ;Re‘/o‘ dr —\/—-—m_—;_—exp(— Ezothﬂ'r). (4)

B = (2Da/)Y?, x=p/2+i(Q-w —k?/2a).

Thus the spectrum is given by the expression (1) with correlation function

inR(‘Uo)t 2
(o, t) = e (h D(k + avo)

,_.___chT €x ZT(T - th T)) ] (5)

where h =1 —isigna, 7 = hI'st, 'y = /D|a]. The beam spectrum examples are plotted
in Fig.1. When I'; <« T'; one can expand th7 to order 73 and replace ch7 by 1. The
resultant expression coincides with (2). If Qr(v) is the 2nd degree polynomial then (5)
is the exact solution for correlation function (1), otherwise it is valid if characteristic
velocity scale of Qg is much greater than (D/|a])'/4.

Let us consider the spectrum of particles that are uniformly distributed over velocity.
For Qg(v) = av?/2 we have I'; = (Da%v?)'/3, T'y = (D|a|)*/? and the spectrum is given
by

1 ®© ; 1 ez + 1)
o = = d dt ®(v, ¢t —iQt _ +37i/8 4
() 7rRe/ U./o (v,t) e —(2D‘a,3)1/4Ree I‘——(z+%)’ (6)
where z = e=™/4(T' + iQ)/,/8Dla|, T'(z) is the gamma function, and the upper/lower
sign corresponds to positive/negative value of a. I(Q) is an asymmetric peak, which
has two characteristic widths: width I' due to decay and diffusion width (D|a|)'/2. If
Q is far from Qg(v.) where v, is the turning point, then the number of particles Ng
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resonantly interacting with the field is proportional to y(vg)/(dQ2r/dv)(vr), where vg is
the resonance frequency, @ ~ Qg(vg); and 4(v) is the width of the beam spectrum with
velocity v. Near a turning point vg =~ v, we have Ng o (v(v.)/(d?Qgr/dv?)(v.))1/?, ie.,
the field resonantly interacts with maximal number of particles when Q ~ Qg(v.). The
spectrum wings are assymmetric:

[ 2
I(Q) ~ a—Q, all > 0,

1 r D|a|)
—— (= +=), ef2<o.
(lﬂl

V2|aQ 402

When the diffusion is inessential ' > (D|a|)'/2, we have

2 1/2 \/|a|\/92+1"2+a9
a(Q—iP)] Y

To calculate the spectrum I({?) one can substitute the beam spectrum Ig(Q,vy) by
5(2 — Qg(vo)) if the linear shift Q'(v) = (dQg/dv)(v) does not essentially change within
the domain » — vg ~ v(vg)/Q'(v5). In more general problem one should demand also
insignificant change of the integral intensity of the beam spectrum with velocity v inside
this domain. Here we have Q'(v) = av, v(v) ~ I'1, so the condition of invariance of Q'
looks like I'y /Q < v, i.e., v >> (D/|a])}/%. The widths of this domain and function p(v)
at vg = 0 are of the same order. The shift of the resonance frequency in this domain is
of the order of I's.

Now we will calculate the probe-wave spectrum in the presence of strong field at the
adjacent transition. The strong and probe fields are resonant to transitions between
states |2) and |1}, |3), respectively. We assume both waves copropagating and denote the
projection of the velocity by v = kv/k, where k is the wave vector of the strong field.
Denoting the detunings from the resonance of the strong and the probe waves as Q and
Q,, we write kinetic equations for off-diagonal elements of density matrix as

PIS(r’ v, t) = p13(v) exp(i(k“ - k)r - i(Q“ - Q)t)a
p23(x, v,t) = pag(v) exp(ikur — iQut),

.o d? .
(Qu - B+ 1D(—1;2—)P31 = Gp3z — G,,ch

I(2) =Re [

: d2 * -
(Qu — Q2 + IDW) ps2 = G*p31 — G (p2 — ps), (7
=0+ (k“ — k)’U +il13, Qo = kuv + il'ag,
where I';3, 23 are the relaxation constants of coherence between |2) and 1), |3); G =
= Edj;1/2k, G, = E,d33/2h, d;; is the matrix element of the dipole moment, and E, E,
are the amplitudes of the strong and the probe waves, respectively. To find ps;, ps2 one

should know pa3, p3 and pa1.
The beam spectrum with velocity v has two resonances at Rabi frequencies [8]

Q%D (v) = ko +  + 04 % /{7 + T2 + G, @

where 21 = Q — kv, 2I'y = I'13 £ T'23. One can think that there are two types of particles
with different dependence of their resonance frequency on velocity. Strictly speaking the
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diffusion causes transitions between these types. But if |G| > (Dk?9)'/3 then one can
treat this two branches of hyperbole (8) independently and apply the theory developed
above. Only two elements of the density matrix are mixed by the strong field. Then there
is no cubic and higher shifts in the equation for p32. One can get this equation by the
action of operator (Q, — Q15 +iD d*/dv?) on (7).

If k, < k then there is one turning point in each of this two frequency branches posed
at

dv?

Q _ (2, - k)|G| (1.2) Q. 2G|
=2 ol =k, + 22k, (k- k),
v112 k :F k k“(k - k“)’ R (vl,2) k/-" k k l-‘( l‘)
any? B _aal? L 2(ku(k — k)32
d'U ('01,2) - 0’ a= ('U1,2) - :t leI N (9)

Here for simplicity we have neglected the decay I'y3, ['23. Expressions for coordinates of
turning points (9) coincide with the result for collisionless case [9). The curvature of the
frequency branch a x 1/|G|, Ng o |G|*/?, then the absorption grows with |G|.
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Fig.2. Absorption spectra I,(,) in arbitrary
units. (Dk2)/3 = 6.3-10~2kv7 : numerical calcu-
lations (curve 1) and approximation formula (10)
(curve 2); and D = 0 (curve 3). I'y; = 10~ 3kvr,
= 0.3kvr, |G| = 0.2kvp, ky = 0.8k. The popu-
lation of levels 1 and 2 coincide. The dashed curve
in the inset corresponds to G = 0

Absorption spectrum y(€2)
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By analogy with (5) the spectrum is given by

2 ©o . €]
I,(Q) < Y (~1)°Re / dv f dtexP(i(ch;l — M)
j=1 0 V4 T

(O ~ Wp)(p2 — p3) + Gpn
1 2
R - ap

exp (h; (Tjn/T2)* (r; — thy)) (10)

anfd

1/3 _
Ti =(D Jv ) ., hi12=1Fisign(k—k,), 2= (EBM

1
af) P

1/2
) 3 T = hjrzt.

The probe-wave spectrum is illustrated in Fig.2. In the inset there are two narrow
peaks that come from the return points. Curve 1 is derived from numerical solution of
coupled diffusion equations for the whole 3 x 3 density matrix with taking into account
the friction force and collisional mixing of the frequency branches.
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The diffusion width I's of each narrow peak in the spectrum is found to be much
less then width I'y = (Dk2)!/? resulting from the linear shift. Their ratio is I'2/T; =
= (2I'15/|G|)1/?, where & = (k/k, — 1)*/2k,/k. Such peaks in plasma (Ar", 488 and
514.5 nm, V-scheme with common short-lived level 2, I'23 = 250 MHz) was observed
in [12]. If we take the diffusion coefficient measured under similar conditions [13], then
I'; =170 MHz, I’y = 20 MHz. However, the width of the peaks was about 200 MHz. The
diffusion width of the peak arises from the nonlinear shift near a turning point; otherwise,
the peak would be appreciably wider.

Thus, the absorption spectrum of the gas of particles whose velocity evolves in a
diffusion way is obtained. The dependence of the resonance frequency on the velocity
of the particle can deviate from linear. The universal shape of the narrow peak in the
spectrum (6), which comes from the extreme point of the velocity dependence of the
resonance frequency, is found. The collisional width of the peak is proportional to the
square root of the diffusion coefficient.

We thank E.V.Podivilov for stimulating discussions, and A.I. Chernykh for valuable
advice on numerical methods. The present paper was partially supported by RFBR
(#96-02-19052, #96-15- 96642), R&D Programs “Optics. Laser physics” (#1.53), “Fun-
damental Spectroscopy” (#08.02.32), and Soros student’s program (M S, s97-215).

S.Rautian and L.Sobelman, Usp. Fiz. Nauk 90, 209 (1966).

P.Berman, Adv. At. Mol. Phys. 18, 57 (1977).

S.Rautian and A.Shalagin, Kinetic problems of nonlinear spectroscopy, Elsevier, Amsterdam, 1991.
G.Smirnov and D.Shapiro, ZhETF 76, 2084 (1979).

L.Galatry, Phys. Rev. 122, 1218 (1961).

M.Podgoretsky and A.Stepanov, ZhETF 40, 561 (1961).

S.Rautian, ZhETF 51, 1176 (1966).

S.Autler and C.Townes, Phys. Rev. 100, 703 (1955).

. O.Bykova, V.Lebedeva, N.Bykova, and A.Petukhov, Opt. Spektr. 53, 171 (1982).

10. A.Feitish, D.Schnier, T.Miiller, and B.Wellegehausen, IEEE J. Quant. Electr. 24, 507 (1988).
11. A.Apolonsky et al., Phys. Rev. AB5, 661 (1997).

12. N.Bykova et al., Preprint ITAM N26-84, Novosibirsk, 1984.

13. S.Babin and D.Shapiro, Phys. Rep. 241, 119 (1994).

PRI BN

32





