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Results are presented from a low-temperature scanning tunneling microscopy (STM)
investigation of III-V semiconductor surfaces cleaved in situ along a (110) plane. The
STM topographic images reveal the presence of surface charge structures. The possibility
of their observation depends on the charge state of the apex of the STM tip. Peaks are
also observed in the local tunneling conductivity spectra. The energy position of these
peaks and the energy position of the edges of the band gap change with distance from
the defect. A theoretical model is proposed which demonstrates that the experimental
scanning tunneling spectroscopy (STS) data can be explained by effects due to a nonequi-
librium electron distribution in the contact area, which gives rise to localized charges. In
this model the on-site Coulomb repulsion of localized charges and their interaction with
semiconductor electrons are treated self-consistently.

PACS: 07.79.-v, 61.16.-d

For a clear understanding of the experimental results, the STM topographic images of
surface defects at different values of the tunneling bias voltage must be compared directly
with the local spectroscopy data [1]. We present the results of low-temperature STM/STS
investigations of atomic defects on the GaAs (110) surface at 4.2 K. The experimental
procedure is described in [2]. We have used GaAs single crystals heavily doped with Te
(n = 5-10'7 cm™3%). The typical STM topography of an atomic defect is depicted in the
inset in Fig.1. According to the common view [3] this type of defect is a dopant atom
residing on the surface.

Normalized conductivity curves measured by means of current-imaging tunneling spec-
troscopy (CITS) around this kind of atomic defect are presented in Fig.1. Let us mention
the main features of the tunneling conductivity curves. The measured band gap edges are
shifted by approximately 200 meV near the defect as compared to the flat surface region.
A set of peaks around the defect, which are absent above the flat surface, exists in the
voltage range from —1V to 0V. There is a peak of the tunneling conductivity in the bias
range from —1.5V to —1V. The position and height of this peak depend on the distance
from the defect; this peak does not disappear above the flat surface region.

We assume that the tunneling conductivity peaks in the band gap can be attributed
to the Coulomb interaction of the electrons of the sample and induced charges localized
both on the STM tip apex and near the defect. We suppose that in this situation the on-
site Coulomb repulsion of localized electrons (Hubbard repulsion) is also very important.
Such an interaction can change the energy values considerably even for deep impurity
levels. As a result, there is a strong dependence of the level energy on the tunneling bias
voltage. The experimentally measured position of the peak of the tunneling conductivity
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Fig.1. Tunneling conductivity spectra measured near a tellurium atom residing on the cleaved in situ
(110) GaAs surface at a temperature of 4.2K. The inset shows the STM image of the 5.8 nm x 5.8 nm
surface area from which the spectroscopic data were acquired. Each tunneling conductivity curve is the
result of averaging and subsequent numerical differentiation over the surface area which is marked by
numbers on the STM topogram

does not coincide with the bulk value of the unperturbed energy levels of the doping
impurity.

We have proposed a self-consistent theory for tunneling processes in an STM junction
in the presence of impurity states. Various experimental situations can be considered in
the framework of this theory. The impurity level can be associated with a surface defect
or with a defect in an intermediate layer. The impurity level can also be connected with
several atoms or even a single atom on the apex of the STM tip. The proposed theoretical
approach includes the following main points. At low temperature and small contact
size the steady-state electron distribution is not the thermal equilibrium distribution
because of the finite relaxation rate of tunneling electrons [5]. STM/STS measurements
can be strongly influenced by a nonuniform charge distribution and the corresponding
additional Coulomb interaction [1, 2]. In general, in low-dimensional systems considerable
modification of the initial electron spectrum occurs due to the tunneling process itself [4],
and charge effects could become very important.

To describe the tunneling processes in an STM junction in the presence of a localized
state we use a model which includes three subsystems: an ideal semiconductor, a localized
electronic level-surface impurity or tip apex state, and a normal metal (STM tip). These
subsystems are coupled by tunneling matrix elements. We add an interaction of the
semiconductor with a heat bath in order to describe finite-relaxation-rate effects. The
Hamiltonian H of the model is thus



H = Hy+Hi+ Hp+ Hun + Hing + His, (1)
where H. +c is the Hamiltonian of the pure semiconductor:

Hye =) (er — )65 yoxos (2)
k,o

ck,o i the annihilation operator for an electron with momentum k and spin o, and p is
the Fermi energy in the semiconductor.

The part Hj corresponds to the impurity state and takes into account the Hubbard
repulsion:

Hy=e4d dfd, +U/2) nind,, 3)
(-4 o

where n¢ = d} d,, the operator d, annihilates an impurity electron with spin o, and &4
is the impurity energy level (which in the general case is dependent on the bias V). The
part H;,; describes the tunneling between the semiconductor and the impurity state:

Hup=T Z(c;oda +h.c.), (4)
k,o

with an interaction matrix element T'.
The Hamiltonian of the metal tip H,, is

H, = Z(ep -p- eV)a;’t,ap,,y , (5)
p'v

where ap, , is the annijhilation operator for a tip electron with momentum p and spin o,
and V is the applied bias voltage.

The part Hiyn corresponds to the impurity—metal-tip hopping (tunneling) term with
matrix element 7":

Hyun =T'> (o} ,ds +h.c.). (6)
P

Finally, Hp, describes the interaction of the semiconductor electrons with a heat bath,
which leads to a finite relaxation time of nonequilibrium electrons. The kind of heat bath
is not crucial for our purposes and we choose the simplest form:

Hy = Y T"(k-p')c ,bp o +hc) (7)

k,p'\o ,

where by » is the annihilation operator for a heat bath electron with momentum p’ and
spin o, and T"(r) is the effective interaction with the heat bath.

As we have said, an additional charge associated with localized states in the contact
area can appear if the finite relaxation rate is taken into account. The influence of this
charge on the tunneling characteristics can be considered self-consistently in the following
way [6].

a) The Coulomb interaction of the Hubbard type is treated self-consistently in the
mean-field approximation. The characteristic scales of the STM junction and the possi-
ble radius of a localized state on the apex of the tip have values ag ~ 5-10 A. Thus the
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Coulomb repulsion U = €?/ag should have a value of the order of the semiconductor band
gap (0.5-1.0eV), which is much smaller than bandwidths of the semiconductor and the
metallic tip. Thus we suppose that the constraint on double occupancy (of a localized
state) is not essential for our problem. It is well known that Coulomb correlations in
Hubbard-type systems begin to play a significant role only if U is greater than the band-
width. For smaller U the mean-field approximation gives satisfactory results. Thus the
Coulomb interaction leads to a dependence of the localized state energy on the additional
charge density: €4 = eg + Uédng, where U presumed to lie in the region 0.5-1eV.

b) A potential W is introduced to describe the interaction of semiconductor elec-
trons with the additional charge dng present on the localized state. The corresponding
interaction Hamiltonian has the form

Hy =) Wk -X)cf 00,0 (8)
k,k’

Exact calculation of the electrostatic potential W is possible only if the exact geometry
of the contact is known. Usually the details of the shape of the tip apex and, consequently,
the spatial distribution of the electric field cannot be determined. Nevertheless, there are
two possible cases for which the analysis can be simplified. If the charge screening in
the semiconductor is weak, the effective radius R of the potential is much greater than
the interatomic distance R 3> a. Then W(k — k') = w x dngdx s, with the parameter
w determined by the particular contact configuration. The potential is almost constant
at distances greater than the contact area. This case is similar to band-bending effects
in planar tunnel junctions in the presence of an applied bias. In such a situation one
can observe a shift of the gap edges in tunneling experiments (7]. The other case is
encountered if the geometry of the contact or strong screening in the semiconductor leads
to a point-like effective potential — the effective radius R of the potential is of the order
of the interatomic distance a. Then W(k —k') = w x éng . In this case we are interested
in the point-like potential caused by the localized charge both on the apex of the STM
tip and on semiconductor surface defects. For charge localized on the tip the constant
w is determined by the distance from the tip to the semiconductor surface. Typical
values of the tip-sample separation d in STM junctions do not exceed 10-15 A. Thus the
simplest estimate of the Coulomb potential (e2/d) at the semiconductor surface yields
w ~ 0.3-0.5eV. In any case Coulomb effects should be taken into account, because
the tip—sample separation and typical radius of a localized state are comparable to the
interatomic distance. The extra charge on a localized state and the tunneling conductivity
of a system can be determined by means of a self-consistent approach based on a diagram
technique for nonequilibrium processes [7].

The tunneling conductivity dI/dV (w) can be determined from the corresponding ki-
netic equations for Keldysh Green functions in terms of nonequilibrium occupation num-
bers ng(w) of the localized state:

dIfdV(w) = —43ImGgy(w)(ne(w) - ng(w)) (9)

where n3(w) is the equilibrium occupation number of the localized state, and Gf'ff) (w)
is the exact retarded (advanced) Green function of the localized state.

The sample and contact characteristics appear in the final expression for the tunneling
conductivity as relaxation and kinetic constants (functions):

—iro(w) = —ilT"Prp(w) - iv(w) = ~i|T"Pry ()
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Ty=—pImGY Tp=-7) ImGR, T =T (10)
kK’

where v, is the conduction-band density of states, and vp(w) and vy (w) are, respec-
tively, the densities of states in the metallic tip and in the heat bath connected to the
semiconductor.

The final expression for the tunneling conductivity after all substitutions can be written

as
2CaTw(T/T)(Z; + Z3)
W/VE) = [T Tz, + D+ BT )
x (ng(w) —nd(w - eV)), (11)

where nd(w) and nf,(w — eV) are the equilibrium occupation numbers of the states of the
semiconductor and metallic tip, respectively. The dimensionless functions Z are given by

20 = 2%Im[(G:}(w)(w——éd)—1) a(zd)]
Z2 = 2TIm GF(w)im(a(éq))
7 = 270T1m[(Gf(w) (1—i7“’——_ ur ’7") +i%) ——————a(ez)_—;(‘")]
_ 1
) = Y sars @

where €4 = €4 + i70-

The additional charge dng4 is determined self-consistently from the exact nonequi-
librium occupation numbers and the density of states on the localized state. Both these
parameters are functions of the applied bias voltage and the value of the additional charge,
since they depend on €4 = €3 + Uédny and the Coulomb potential W (dng) (Eq.8):

ng(V) = /[(—l/ﬂ)Imed(w, Ving(w,V) —
- (-1/m)ImG{,(w,V = 0)nd(w,V = 0)] (13)

The analytical expression for the dependence of the tunneling conductivity on the
applied voltage for the two situations described was analyzed numerically. The results
for typical parameter values (relaxation rates -y and <, tunneling rate I, and initial
impurity level €}) are depicted in Fig.2. Two different situations were investigated: 1)
€Y lies in the band gap (Fig.2, curves 1-3); 2) there is one or a few localized states
in the conduction or valence band (Fig.2, curves 4,5). We present in Fig.2 the results
of calculations for the Coulomb parameters U = 1eV and w = 0.5eV. The qualitative
behavioral features of the tunneling conductivity are insensitive to some variations of the
Coulomb parameters within the regions estimated above. The initial model density of
states for the semiconductor is shown by the dotted curve. It obviously differs from the
tunneling conductivity curves that could be obtained in STS measurements. One can
clearly see the shift of the gap edges, which becomes more pronounced with decreasing
relaxation rates (Fig.2, curves 4,5). A nonequilibrium electron distribution leads to charge
accumulation on a localized state, with initial energy €9. Because of Coulomb repulsion
this results in a simultaneous change of its energy by an amount Ae which is comparable
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to the value of the band gap. In this situation a localized state is often manifested as
a peak occurring near the band edge (Fig.2 curves 1,2) regardless of its initial energy.
Near the band edge the tunneling current grows rapidly with tunneling bias, thus strongly
changing the localized charge. Such a peak can appear above the flat surface area if the
localized state is associated with the apex of the STM tip. This can be seen from curve
1 in Fig.1, which shows the experimental curves of the tunneling conductivity. The peak
position is sensitive to variations of the characteristic parameters T', v, 7o, and 24, -which
determine the value of the additional charge. But the peak is not very sensitive to the
position of the Fermi level relative to the band gap edges.

Our model can be generalized for situations in which there are several localized states
£, associated both with the apex of the STM tip and with the defect.

As the charge accumulated in a localized state g4 is determined by the relaxation and
tunneling rates, it depends on the tip-sample and tip—defect separation. By changing
the STM tip position one can obtain various tunneling conductivity curves with different
peak positions. The shift of the gap edges and the tunneling conductivity peaks that are
sensitive to changes in the tip position can be seen in Fig.1. They can be qualitatively
understood in terms of the proposed theoretical model.
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