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Experimental study of single-soliton dynamics in a ring-shaped Josephson
junction is reported. An externally applied magnetic fleld H forms a harmonic
potential for the soliton in the ring. Rotation of the soliton in the junction leads
to a potential-induced emission of plasma waves which give rise to a resonance at
a certain soliton velocity. This behavior agrees with numerical simulations which
indicate locking of the soliton to the radiation frequency. Good agreement between
experiment, kinematic model and numerical simulations is found.

PACS: 03.40.Kf, 03.65.Pm, 74.50.+r

Motion of a sine-Gordon soliton in a spatially periodic potential has been
studied in several theoretical papers rather long time ago [l, 2]. It has been
shown that the soliton radiates small-amplitude waves with plasma dispersion
relation. The wave frequency depends on the soliton velocity and the period
of the potential [2]. A fluxon (a Josephson vortex carrying one magnetic flux
quantum &) in a long Josephson junction is a well known example of a soliton
described by the perturbed sine-Gordon model. It has been predicted [3] that in a
periodically-modulated junction of the finite length £ the generated radiation should
lead to resonances which appear as additional steps on a current-voltage (I — V)
characteristics. These resonances have been observed in experiments [4] using an
artificially prepared lattice of inhomogeneities in the junction. Such a realization of
the periodic potential appears to be rather straightforward but it does not allow
to control the potential amplitude and its shape during the experiment.

Ring-shaped (annular) long Josephson junctions serve as the best model objects
for studying soliton dynamics. Due to the magnetic flux quantization in a
superconducting ring, the number of fluxons initially trapped in an annular junction
is conserved. The fluxon dynamics can be studied here under periodic boundary
conditions. While the fabrication of annular Josephson tunnel junctions is rather
easy, trapping of fluxons in them remains the state of art. Using different
trapping techniques, both single-fluxon (5] and multi-fluxon [6] dynamics have been
investigated in homogeneous annular junctions.

In this letter I present experiments with a single fluxon trapped in an annular
Josephson junction which is placed in the an externally applied magnetic field
H. The geometry is schematically shown in Fig.l. Due to the interaction of the
fluxon with the radial field component, the fluxon moves in a harmonic potential
U(0) ~ Up cos@ with the amplitude Up proportional to H. The minimum of the
potential is located in the region of the ring where the fluxon is directed along
the field. The theoretical model for this system was proposed by Grgnbech-Jensen
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et al. [7). The field accounts for an additional term in the perturbed sine-Gordon
equation which describes the fluxon motion:

0 0.5 10 15k
T Y 3

1,,(mA) %

, —e—Ezperiment e 10.6

o Simulations g G

101
o4
i
0.6
—0.2
.—1
! VO U S W S |/}
0 G 0Z 03 04 05H0e
Fig.l. Schematic view of an annular junction Fig.2. The critical current Iy of the annu-
with trspped fluxon; a magnetic field H is lar junction with one trapped fluxon versus
applied in the plane of the tunnel barrier the applied magnetic field H. Simulations of
Ycr(h) were performed by numerical integration
of Eq. (1)
. . 2xz
Paz — Prt =sinp + apy —y — hsin ——, (1)

where ¢(z,t) is a superconducting phase difference between the electrodes of the
junction, the spatial coordinate z along the ring is normalized to the Josephson
penetration depth );, the time ¢ is normalized to the inverse plasma frequency
wyl, « is the dissipation coefficient due to the quasiparticle tunnelling across the
barrier, v is the bias current density normalized to the critical current density
J. of the junction, and £ = xD/)\;, D being the ring’s diameter. The last
term in Eq. (1) accounts for the coupling between the applied field and the flux
density in the junction. The dimensionless amplitude h o< H is normalized by a
sample-specific geometrical factor (7, 8]. In case of one fluxon trapped in the ring,
Eq. (1) is supplemented by the periodic boundary condition o) =p(0) + 27. At
low velocities the fluxon's coordinate is described by the equation which is similar
to that of a driven pendulum in a lossy medium [9].

Experiments have been performed on Nb/Al-AlO;/Nb Josephson junctions.
Trapping of a magnetic flux in the ring was made while cooling the sample below
the critical temperature T.N°=9.2K of niobium with a small bias current passing
through the junction. Measurements were performed by applying the bias current
I from top to the bottom electrode of the junction and measuring the dc voltage
generated due to the fluxon motion. Results presented below were obtained for a
junction with the mean diameter D =132 um and the ring width W= 10um. The
normalized ring’s circumference at T'=7.3K was estimated £~ 7.7.

Fig.2 shows the measured and numerically simulated critical current I, of the
annular junction with one trapped fluxon versus the applied magnetic field H. At
H =0 the sero-voltage depinning current I is very small, by a factor of about
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300 smaller than the critical current I. measured for the same junction without
trapped fluxon. This indicates the very high homogeneity of the junction. The
linear increase of I at low fields is well described by the theoretical model [7]
based on Eq. (1). The zero-voltage state is stable as long as the maximum pinning
force due to the field-induced potential is larger than the bias current force acting
on the fluxon. This is satisfied in the range | v |< Y. where v = hsech(n?/£) [7].
The nonlinear region of I(H) at high fields has been recently studied by Vernik
et al. [10]. The fluxon I — V characteristics in the low field range are shown
in Fig.3. As indicated on the plot, four presented curves correspond to different
values of H. At H %0 the current I, increases and hysteresis appears on the
I—-V curve. At I > I, the fluxon overcomes the pinning potential and starts
to move in the junction, thereby generating a dc voltage. If the bias current
is decreasing, the underdamped fluxon motion continues until the current is low
enough for the fluxon to be trapped by the well.
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Fig.3. Current-voltage characteristics of a single
fluxon rotating in the junction at T' = 7.3 K.
Different applied magnetic fields H are indi-
cated on the plot. Horizontal arrows show
switching directions

Fig.4. Numerically simulated current-voltage
characteristics of a single fluxon for junction
parameters £=7.8, a=0.05 and h as indicated
on the plot. The resonant step associated with
the fluxon interaction with its radiation is seen

at v 0.75

The I — V characteristics presented in Fig.3 show a clear resonant step at
28 — 30 V. With increasing H, the I — V curve first shows a small bump at
about 30uV which evolves at higher fields in a pronounced step. At fixed H, the
shape of this step is strongly dependent on the temperature. We have simulated
the current-voltage curves (bias current y vs the fluxon velocity v) by numerically
integrating Eq. (1). The simulation results with parameters {=7.8 and a=0.05,
close to that in experiment, are presented in Fig.4. One can see that the
qualitative agreement between the simulations and the experimental data of Fig.3
is very good. Some features of the internal dynamics of the junction corresponding
to the simulated y(v) characteristics are shown in Fig.5. One can see that the
resonant step at v~ 0.75 is characterized by the background voltage oscillations
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(plasma waves) with a period in time, which is 3 times smaller than the fluxon
oscillation period. Thus, at sufficiently large h the fluxon strongly interacts with
the field-induced potential and a large part of its energy is transferred into the
radiation.
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Fig.5. Voltage oscillations at = =0 for two different points of the y(v) curve with A=0.5 shown
in Fig.4: (a) at the radiation-induced step, point A (y =009, v=0.75); (b) at the main fluxon
step, point B (v =0.10, v =0.84)

A simple model for the potential-induced fluxon radiation can be proposed
in the following way. A fluxon rotating in an annular junction can be viewed
as moving in a periodic potential which has a spatial period of £. Under such
conditions, the fluxon is predicted to emit small-amplitude plasma waves, the
wavenumber k and frequency w =+/1 + k2 of which depend on the period ¢ and
the fluxon velocity v [2]. The radiation should lead to a series of resonances at
w =27 nv/f, where n is an integer. These resonances where predicted [3, 11] to
appear as steps on I — V characteristics at the fluxon velocities

1,,.=\/(1_;f;)2+ (7%1-)2 )

where L is the spatial period of fluxon oscillations and a is the period of the
potential. According to Mkrtchyan and Schmidt {2}, the amplitude of the emitted

~1/2
waves is the highest near the radiation threshold vy = [1 + (21r/L)2] . Using

Eq. (2) with L=a=£=78, we obtain v3 =~ 0.785 to be the closest resonance
to the threshold velocity wvin, & 0.779. This prediction is in good agreement with
experimentally measured (Fig.3) and theoretically calculated (Fig.4) position of the
resonance step. Moreover, the radiation frequency in Fig.5(a) corresponds to n=3,
as expected.

At low temperatures the radiation step becomes more complicated in shape,
showing negative differential resistance and chaotic switching between several closely
located branches. For low losses, such a complex resonance was earlier simulated
numerically [9] and has been attributed to a strong fluxon-plasma wave interaction
leading to an intrinsically chaotic dynamics in the junction. Though the background
oscillations were discussed, the authors of {9] did not suggest any analytical model
which can predict the voltage of the resonance or the harmonic number n. From
the model presented above it can be argued that chaos in this system is possible
due to a competition between several resonances lying at close voltages. For
example, n=2 and n=4 resonances predicted by Eq. (2) occur at v; =~ 0.797 and
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vg ~ 0.812. Thus, reduction of losses (decrease of temperature) can be expected to
complicate the dynamics, as indeed was observed experimentally. A more detailed
investigation of these effects will be published elsewhere.
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