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We study the effect of the density of states (DOS) fluctuations on the
thermocelectric coefficient of highly anisotropic superconductor above critical temper-
ature. It is shown that it is the DOS contribution which gives rise to the leading
correction to thermoelectric coefficient in spite of previous results where the only
Aslamazov—Larkin term was taken into account. This conclusion is valid for an
arbitrary impurity concentration.

PACS: 72.15.31, 74.40.+k

1. The problem of thermoelectric effect in fluctuation regime has been attracting
the attention of theoreticians during more than twenty years, since the paper of
Maki {1]. The main question which should be answered is whether the correction
to thermoelectric coefficient 8 has the same temperature singularity in vicinity of
critical temperature T, as the correction to electrical conducticity ¢ or not. In the
paper of Maki [1] the only logarithmically divergent contribution was predicted in
two-dimentional (2D) case and its sign was found to be opposite to the sign of the
normal state thermoelectric coefficient Gy. Later on, in a number of papers [2-4] it
was claimed that temperature singularity of fluctuation correction to  is the same
as it is for ¢ (x (T —T.)7! in 2D). Finally, Reizer and Sergeev [5] have recently
revised the problem using both quantum kinetic equation and linear response
methods and have shown that, in the case of isotropic electron spectrum, strongly
divergent contributions [2-4] are cancelled out for any dimensionality, while the
final result has the same logarithmic singularity as it was found by Maki, but
the opposite sign. We should emphasize that in all papers cited above the only
Aslamazov-Larkin (AL) contribution was taken into account, while the anomalous
Maki-Thompson (MT) term was shown to be absent [2, 5]. It was mentioned [J]
that the non-correct evaluation of interaction corrections to heat-current operator
in Refs. [2-4] produced the erroneously large terms which really are cancelled out
within the adequate procedure. Due to this strong cancellation the AL term turns
out to be less singular if compared with corresponding correction to conductivity
[5]- ' '

From the other side, now it is well established that in every case where the
senior AL and MT fluctuation corrections are suppressed by some reason, the
contribution connected with fluctuation renormalization of one-electron density of
states (DOS) can become important. As examples we can mention c-axis fluctuative
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transport [6, 7], NMR relaxation rate [8] and infrared optical conductivity 19].
In this communication we show that the analogous situation takes place also
in the case of thermoelectric coefficient. In what follows we study the DOS
contribution to the thermoelectric coefficient of superconductors with an arbitrary
impurity concentration above T.. We will be mostly interested in 2D case, but
the generalization to the case of layered superconductor will be done at the end.
We show that, although DOS term has the same temperature dependence as AL
contribution [5], it turns out to be the leading fluctuation contribution both in
clean and dirty cases due to its specific dependence on electron mean free path.

The Feynman diagrams for the fluctuation correc-
tion to thermoelectric coefficient are shown. Shad-
ed partial circles are impurity vertex corrections,
dashed curves with central crosses are additional
impurity renormalizations, and shaded thick lines
are additional impurity vertex corrections

2. We use units with A=c=kg=1. We introduce the thermoelectric coefficient
B in the framework of linear response theory as:

_ o Im[QEMR(W)]
ﬁ_a.lll—% Tw (1)

where Q(*®®(w) is the retarded Fourier component of the correlation function
of electric and heat current operators. This correlation function in diagrammatic
technique is represented by the two exact electron Green’s functions loop with two
external field vertices, the first, —ev, associated with the electric current operator
and the second one, %(en + €n4y)v, associated with the heat current operator
(en =7T(2n 4 1) is fermionic Matsubara frequency and v =298¢(p)/8p with ¢ being
the quasiparticle energy). Taking into account the first order of perturbation theory
in Cooper interaction and averaging over impurity configuration one can find ten
diagrams presented in Fig. 1. The solid lines represent G(p,en) = 1/(i€, —£(p)), the
single-quasiparticle normal state Green’s function averaged over impurities which
contains the scattering lifetime 7 (&, =€, +1/27signe,). The shaded objects are the
vertex impurity remormalization A(q =0, ¢,,€,') (see [7]). The wavy line represents
the fluctuation propagator L(q, )

T 1 |0 21q? 1
L_l(q,ﬂk)=_p [lnf:-i-i/) (§+ %4‘ ”2‘3“) -9 (7)] (2)
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where

_ T (11 1 1, (1
"y [‘/’ (5 + ‘—“47rTT) - (7) R <i)]

is a positive constant which enters into the current expression in Ginzburg-Landau
theory in 2D case (p is one-electron density of states and (z) and ¥'(z) are
digamma function and its derivative, respectively). The first diagram describes the
AL contribution to thermoelectric coefficient and was calculated in [§] with electron-
hole asymmetry factor taken into account in fluctuation propagator. Diagrams 2-4
represent Maki-Thompson contribution. As it was mentioned in Refs. [2, §),
neither anomalous nor regular parts of this diagram contribute to § in any order
of elecron-hole asymmetry. In what follows we will discuss the contribution from
diagrams 5-10 which describes the correction to 8 due to DOS renormalization.
For diagrams 5 and 6 we have

i(€n+v+fn) 2
—2eT dq)L(q, Q)T _r dpv
> [astannr S fap)t »

[Az(eﬂ’ _Eﬂ)Gz (pv Eﬂ) G (q - P "fn) G (p, E'n+u) + (3)

Q(5+6)(wu)

X

+ )‘z(en+w —6,.+,,)G2 (Pv €u+v) G (q - P —€n+u) G (p, fn)] .

(We use the shorthand notation (dq) = d%q/(27)¢, where d is dimentionality).
Evaluating Eq. (3) one naturally obtains zero result without taking into account
the electron-hole asymmetry. The first possible source of this factor is contained
in fluctuation propagator and was used in [§] for AL diagram. Our calculations
show that for DOS contribution this correction to fluctuation propagator results in
non-singular correction to § in 2D case and can be neglected. Another source of
electron-hole asymmetry is connected with expansion of energy-dependent functions
in power of £{/Ep near Fermi level performing p-integration in Eq. (3) (Ep is the
Fermi energy):

9

Only second term in Eq. (4) contributes to thermoelectric coefficient. Contribution
of diagrams 7 and 8 can be calculated in analogous way. Diagrams 9-10 do
not give any singular contribution to thermoelectric coefficient due to the vector
character of external vertices and as a result an additional g2 factor appears after
p-integration. The same conclusion concerns MT-like diagram 3-4.

Performing integration over { we find the contribution of the important diagrams
5-8 in the form

SOREEURHES (4

QE-9w,) = e_f_ [a(l’“;f(f))

where we have separated sums over semi-infinite (—oo,-v — 1], [0,00) and finite

([-v,—1]) intervals :

2en + wy, €n +wy €
1 2z32€,.+w,, e,.+w,,)2+eﬁ !
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g, = — L i (260 + wy)? (g;‘” - g—") (6)
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¥; and £, are associated with diagram 5-6, while £3 with diagram 7-8. Calculating
sums (6) we are interested in terms which are linear in external frequency w,.
Sum X; turns out to be an analytical function of w, and it is enough to expand
it in Taylor series after analytical continuation w, — —iw. The last two sums over
finite intervals require more attention because of their nontrivial w,-dependence
and before analytical continuation they have to be calculated rigorously. As a
result:
R_ W R 2wt | g W

TR e

Finally, we perform integration over q and the total contribution associated
with DOS renormalization in 2D case takes the form:

1 eT. [8(v?p) ( T,
pos _ L T.7), 8
ﬁ 87‘.2 ’U%\p [ 66 ]5:0 In T - Tc K’( T) ( )
T
14—
“(Tr) = - 1 v T /1IN
o [¢ (5 + Iﬁ) v (i) ~ dnrr? (5)]
9)
iTT ~94Tr for Tr>>» 1
= 714(3) ‘
— 1
Tr for Tr <«

To generalize this result to the important case of layered superconductor one has
to replace In(1/¢) — In[2/(v/e+ e+7)] (¢ =(T - T.)/T. and r is an anisotropy
parameter [{7]) and to multiply Eq. (8) by 1/pps, where s is the interlayer
distance. In the limiting case of 3D superconductor (r > €) both AL [5] and DOS
contributions are not singular.

3. Comparing Eq. (8) with the results of [J] for AL contribution, we conclude,
that in both limiting cases of clean and dirty systems the decrease of 8 due to
fluctuation DOS renormalization dominates the thermoelectric transport due to AL
process. Really, the total relative correction to thermoelectric coefficient in the
case of 2D superconducting film of thickness s can be written in the form:

ﬁDOS +BAL _ 1 1
B

T.
T-T.

) [K,(Tc'r)+ 10.61n (;D , (10)

C

where the first term in square brackets corresponds to the DOS contribution (8)
and the second term describes the AL contribution from Ref. [5] (®p is Debye
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temperature). Assuming In(©p/T.) ~ 2 one finds that DOS contribution dominates
AL one for any value of impurity concentration: k as a function of Tr has a
minimum at 77 = 0.3 and even at this point DOS term is larger. In both limiting
cases Tt €« 1 and Tr > | this difference strongly increases.

The temperature and impurity concentration dependencies of fluctuation cor-
rections to [ can be evaluated through a simple qualitative consideration. The
thermoelectric coefficient may be estimated through the electrical conductivity o
as 1 ~ (¢*/eT) foso, where €* is the characteristic energy involved in thermoelectric
transport and f,, is the electron-hole asymmetry factor, which is defined as the
ratio of the difference between numbers of electrons and holes to the total number
of particles. Conductivity can be estimated as o ~ e?A'7*/m, where N, 7* and
m are the density, lifetime and mass of charge (and heat) carriers, respectively.
In the case of AL contribution the heat carriers are nonequlibrium Cooper pairs
with energy €* ~ T — T, and density

T T

N~pdh——In—-°_
PFEe "T_T,

and characteristic time, given by Ginzburg-Landau time 7* ~ rgp, = WL—T—)' Thus
in 2D case

T,
T-T.
One can easily get that the fluctuation correction due to AL process is less
singular (logarithmic in 2D case) with respect to the corresponding correciion to
conductivity and does not depend on impurity scattering [5].

The analogous consideration of the single-particle DOS contribution (¢* ~ T,

T ~ 1) evidently results in the estimate

ADAL ~ (T — T2) /(eTe) fas AcAL ~ efa, In

B~efesTerln TTCTC
which coincides with (8) in clean case. The dirty case is more sofisticated because
the fluctuation density of states renormalization strongly depends on the character
of the electron motion, especially in the case of diffusive motion [10]. The same
density of states redistribution in the vicinity of Fermi level directly enters into
the rigorous expression for 8 and it is not enough to write the fluctuation Cooper
pair density A but it is necessary to take into account some convolution with
bpa(e). This is what was actually done in the previous calculations.

Experimentally, although Seebeck coefficient S = —n/c is probably the easiest to

measure among thermal transport coefficients, the comparison between experiment
and theory is complicated by the fact that S cannot be calculated directly; it is
rather a composite quantity of electrical conductivity and thermoelectric coefficient.
As both 1 and o have corrections due to superconducting fluctuations, total
correction to Seebeck coefficient is given by

AS= So <A—ﬁ - ﬂ) .

Bo oo

Both these contributions provide a positive correction A, thus resulting in the
decrease of the absolute value of S at the edge of superconducting transition
(AB/Bo < 0). As for fluctuation correction to conductivity Ac/og >0, we see from

(11)
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Eq. (11) that thermodynamical fluctuations above T, always reduce the overall
Seebeck coefficient as temperature approaches T.. So the very sharp maximum in
the Seebeck coefficient of high-T, materials experimentally observed in few papers
[11} seems to be unrelated to fluctuation effects within our simple model even
leaving aside the question about experimental reliability of these observations.
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