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We present a theory of superconductivity in doped insulators. In the
magnetic metal state of the compound we obtain the self-consistency equations for
the superconducting state in the spin-dependent impurity bands of both extended
and localized states in the initial insulator gap. A BCS-type triplet pairing field is
considered. We show that the superconducting gep in which single-electron extended
states do not exist is overlapped by the distribution of the localized states. The
formation of a latent superconducting gap is discussed in connection with the
unusual properties of high-T. compounds.

PACS: 71.27.4a, 71.30.+h, 74.20.Mn, 74.72.-h

A surprising feature of high-7, materials is the strong doping dependence of
the density of electronic states (DOS). It has been established from experimental
studies of the optical properties of these materials is that doping diminishes the
DOS above the initial insulator gap and gives rise to new features deep in the
gap [1-5].

The formation of the substitution-induced gap states is inherent to the doped
compounds [6]. The parent compounds have an antiferromagnetic insulating state.
The magnetic phase disappears with small doping, and the material goes to a
poor-metallic phase with a large T..

An adequate model for describing high-T, superconductors must be consistent
with the position of the Fermi level with doping. The most commonly used
approach is to relate the superconductivity to processes occurring in structure
elements of the parent compound, e.g., in the CuO; planes of the cuprates [6-11).
Then one would expect the Fermi level to lie outside the initial insulator gap
in both the metal and superconducting states [6,12]. However, there are reliable
experimental data which indicate that the Fermi level lies inside the gap, among
the doping-induced gap states (see [6] and references therein). Moreover, the Fermi
level appears to depend weakly on impurity concentrations.

From our point of view, the combined effect of disorder caused by impurity
atoms and electron correlations in the doped system is a central issue in high-7,
superconductivity.

Upon substitutional doping, in Laz_,Sr,CuOy, for example, La3t is randomly
replaced by Sr’*. Both valence electrons of Sr go to satisfy the bonding require-
ments, and a singly occupied acceptor level arises in the initial gap. Doping with
nominal Ce*t for Nd®* in Nd,_,Ce,CuO, gives a singly occupied donor level in
the gap. Hybridization between the impurity levels and the initial band states of
the insulator can significantly change the DOS.

The DOS modification caused by the hybridization and potential scattering of
band electrons by impurity atoms randomly distributed in the host lattice has
been studied in [13]. With the use of multiple-scattering theory, the configuration-
averaged Green’s functions over the impurity ensemble were calculated by the
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Matsubara method. It was shown that doping sharply decreases the DOS above
the gap near the band edge and gives rise to impurity bands of both extended
and localized states in the gap region. The formation of the narrow, high-density
band of extended states is caused by hybridization, which induces virtual electronic
transitions over the impurity ensemble: an initial impurity site — a band state —
another site — a band state, etc. It is important that the main high-concentration
peak of the localized states lies within this band.

The Anderson model with strong on-site electron correlations for the impurity
levels and the hybridization has been used to study magnetic ordering and insulator
— metal phase transitions in the impurity bands in the self-consistent Hartree—Fock
approximation {14]. The narrow, high-density bands of extended states (which are
spin-degenerate only in the case of a paramagnetic metal) within the insulator gap
have the same origin as in [13]. Although the impurity band structure depends
strongly on the impurity concentration (as a matter of fact, it causes the transitions
in the system), the Fermi level depends only weakly on the doping. For the singly
occupied donor levels a magnetic insulator state with a finite magnetic moment
per impurity atom is realized in the system at low impurity concentrations. With
increasing concentration, two metallization stages of the system have been found
(14], which correspond to the transitions: magnetic insulator — magnetic metal
— paramagnetic metal. In these metallic states the Fermi level lies within the
main peak of the localized states, but this peak lies within the impurity band of
extended states.

In this letter we present a model of high-T. superconductivity in the impurity
bands. In the magnetic metal state the problem reduces to searching for super-
conductivity in a subsystem with low concentrations and kinetic energies of the
electrons but with a high density of extended states at the Fermi level. Because
of the spin dependence of the DOS in this state, only triplet pairing can be
realized. Here we restrict ourselves to the BCS-type triplet pairing field caused
by electron—-phonon coupling. The hopping mechanism of superconductivity, which
is also predicted by the model, will not be calculated numerically. We shall
show that the superconducting gap in which single-electron extended states do
not exist is overlapped by the distribution of the localized states. The latent
superconducting gap must result in unusual properties of these superconductors.

The Hamiltonian of the system is

H=Hp+ He_ps, (l)

where Hi_pn describes the electron—phonon interaction, and H,4 is the Anderson
Hamiltonian describing the insulator in the single-band approximation (for definite-

ness, the valence band) with an ensemble of impurity atoms randomly distributed
in the host lattice: '

Hy= %: ekai:oakd + Z EOd;;,dja + Z Unjon; _» + zk: {Vkiaitadj’ +h.c.}, (2)
o Jo J ’ jv 7 -

where ay, and dj, are the usual annihilation operators; o is the spin index; k
is the wave vector of an electron in the band state with the energy ey; j is the
number of the impurity atom; &o is the bare impurity level located in the gap
above the band top; ij is the matrix element of the hybridization; U is the
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on-site electron correlation for the impurity levels. Here ) = N, is the total
number of band states; ZJ- = N;m is the impurity concentration.

The Hamiltonian (2) has been solved in the Hartree-Fock approximation with
self-consistent determination of the Fermi level (see [14] for details). To model the
DOS modification, we chose the “semi-elliptical” model of a symmetrical, narrow
valence band with a width of 2D;. At a certain impurity concentration the system
goes to a metallic phase with a finite magnetic moment per impurity atom. The
fraction of the o-spin DOS per impurity atom near the Fermi level in the initial
insulator gap at N;, =0.15N; is shown in Fig.l. Here o =+ denotes the spins.
The é-function peak of the localized states D7, corresponds to a simple pole £J
of the Green’s function G(;)". This peak lies within the high-density band of
extended states E7. That the position of this pole lies within the band E7 is-
a common feature for the various parameter sets. The Fermi energy Ef = 6"1"
and, accordingly, the D} and E; bands are partially occupied. The total number
of localized states per impurity atom (or, in other words, the pole amplitude)
is N} =0.597, and the occupation per impurity atom is 5} = 0.394. The total
number of extended states per impurity atom is N} =0.128, and their occupation

per impurity atom is 7} =0.063. The magnetic moment is 0.466up; the bands
with o = — are unoccupied.
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Fig. 1. The DOS per impurity atom for the Fig. 2. The diagram equation for the anomae-

magnetic metal state near the Fermi level Eg -
1.158 V. The energy is reckoned from the
unperturbed valence band top. Parameter set:
Ny = 02A-3% Dy = 1.5eV, ¢p = Dy + 0.5¢V,
Nim =0.15N:, Vi ;N,/* =13eV, U=05 v

lous Green's function F+kk (w). The line «—
B !

shows the anomalous Green's function F1, the
line —— shows the single-electron Green's func-
tion G, and the dashed line shows the unper-
turbed phonon Green's function D(q,w — w/)

Thus the problem reduces to one of searching for superconductivity in a
subsystem with low concentrations and kinetic energies of the electrons but a high
density of extended states at the Fermi level. From Fig.l one can estimate that

the average DOS in the narrow band

equal to NJfNim/A ~0.3-102 cm™3eV-

E;‘, which has a width of A=0.124 eV, is

When the D}, and E} bands are taken into account. the Hamiltonian (1) can
be reduced to the form (the spin index is omitted):
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H= %ekc,’;ck + le Eafit fi+ HOp+

+ Z (K,,kqf,"'ck + h.c.) éq + Z chitck—qd’q’ 3)
l,k,q k’q

where ¢ is the annihilation operator of an electron in the Ef band state with
energy £); fi is the annihilation operator of an electron in the D} band state;
Kikq and Aq are the matrix elements for electron~phonon scattering; ¢q =bq+bfq;

bg is the annihilation operator of a phonon with wave vector q; pr’h describes
the unperturbed phonons. Here )y = NfNim and 3, = N Nip.

From (3) one can easily obtain a system of eight equations for the Green’s
functions in the superconducting state. In Fig. 2 we only show the diagram
equation for the anomalous Green’s function kak (w). These diagrams use the

conventional notation. It is interesting to note here that for the mechanism of
hopping superconductivity the diagrams including the anomalous Green’s functions
Ff,(w) and F;Tc(w) are important. For this reason the most commonly used
approximation in terms of the diagonal Green’s functions cannot be applied. Here,
since we are restricting ourselves to this approximation, hopping superconductivity
will not be considered. Using the representation of a given number of electrons,
the system of equations is reduced to the form (at least at zero temperature):

Gu(w) = (w —&a— Eu(w))—l, (4)

where the self-energy

, dw
Za(w)=i Y [ G2 101aql"Dlaw = 01)Gig 1) (5)
kq
(w — & — T () ~ z;:,g(w)) Gri(®) = 1+ Ak, w)FYy, (@), (6)
where the self-energies
loc . dwy 2 ‘
Ekk(w) =1 E —ﬁlxqul D(q,w - wl)Gu (w1), (7)
L,q

and o

5% (w) =in: / Sl D(a,w ~ w1)G)_qk_q(1), ®)

(w+ & - 2Br + S (~w) + z:;g,;(—w)) FAy @) =14+ A% (k)G @), (9)

Here the superconducting gap function is given by

8w ==Y [ F2PgPD@w — )P g (o). (10)
q
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The system (4)-(10) should be supplemented by the equation for determination
of the Fermi level, which can be written in the form:

nt +n,,.=————_/ doTm ZG;;(w)+ZGkk(w)) (1)

The self-energy (8) has the same form as in the Eha.shberg equations obtained
for pure metals. This term is important in the strong-coupling case and its role
is understood. A distinction of the present model is that both localized and
extended states exist at Ep. Moreover the total number of the localized states
and their occupation are much greater than those for the extended states, as was
shown above. In order to determine how the localized states influence the pair
condensate, we henceforth take into account the self-energy (7) only.

In the calculations Kkiq is taken to be independent of k and q. Using the
unperturbed Green’s function for phonons, one obtains:

-1 2 = kiq _
(27) Zq: |rcqu| D(q,w — wy) (91)0-0)3T(w w1), (12)
where o 2
T(w) =6} +wzlog|—DT—;£—‘+i1rw20(GD - |w|) (13)

Here 8p 1is the Debye temperature and ap is the crystal lattice parameter. On
introducing the effective constant M.g, Eq.(10) can be reduced to a BCS-type
equation for the superconducting gap Ag:

At = —idg Zk: / ‘;—:ij'k(w)e(ep - léy - Brl). (14)

The self-consistency equations (4)-(7), (9), (11), and (14) for the supercon-
ducting state were solved by an iteration procedure.

The single-electron DOS per impurity atom for the superconducting state is
shown in Fig.3. Here Ag =10 meV. In the superconducting gap region the density
of single-electron extended states is equal to zero. The lower edge of the region
is sharp, whereas the upper edge is smeared. The width of the region is about
14 meV, which is less than the 2A, corresponding to the “big” gap in the BCS
model. Near the edges the DOS increases sharply, as expected.

The important result is that although single-electron extended states do not
exist in the superconducting gap region, the peak of the localized states overlaps
this region, as can be seen from Fig.3. Thus the distribution of the localized
states can obscure the superconducting gap in experimental observations. This
can explain the observed qualitative distinction between the optical conductivity of
La;.85510.15Cu0O4 and the conductivity of the classical BCS superconductor NbN
[15]. A clear superconducting gap opens up in the conductivity of NbN at a
photon energy < 6 mev. For Laj gsSrp.15CuO4 the gap did not manifest itself
up to a photon energy < 3 mev. In the present model, because the band D},
of localized states is partially occupied and overlaps the superconducting gap, the
optical conductivity at such low photon energies can be due to both hopping
conductivity in the D}, band and optical transitions From the localized states to
the extended states above the upper edge of the E; band.
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Fig.3. The single-electron DOS for
the superconducting state. The en-
ergy is reckoned from the Eg.. The
Fermi level Ep = 0.672 meV. The
solid curve is the impurity band E'," .
The dashed curve is the impurity
band D},. The superconducting gap
Ao =10 meV. Inset: The energy dis-
tribution of the electron pairs. Pa-
I rameter set: p =33 meV, g =16.9
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In conclusion we present data on the electron concentration in the super-
conducting state. The emergy distribution of the electron pairs p(§y) is shown
in the inset of Fig.3. One can see that the distribution tends to 1/4 near
Ep. We calculated the pair concentration N, = 2.3x10?° ¢m~3. From Ep and
Eq.(11) we obtained the occupation number n} =0.396 for the localized states
n+ = 0.061 for the extended states. The concentration of localized electrons
Nx =} Nim = 1.188.10%2 cm~3, and the electron concentration in the single-particle
extended states N, =0} Nim—2N, = 1.38. 10** ¢m~3. Thus the relation Np€N,<N,
shows the unusual character of the superconducting state.
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