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A simple method to deal with the Hall effect in metals with short-ranged impurities in
a weak magnetic field is proposed. The method is based on a Schwinger representation for
the electron Green function in the magnetic field. The method efficiency is demonstrated
on an calculation of the antisymmetric components of the conductivity tensor at finite
wave vector.

PACS: 72.15.Gd

Despite the discovery of the quantum Hall effect, theoretical analysis of the Hall effect
in metals in weak magnetic fields has been attracting a lot of attention [1-6] because of
its practical as well as scientific interest. Quantum-mechanical treatments of the issue
published up to now are based on a method proposed in [2]. In this method, an electron
system subjected to external uniform magnetic field is considered to be a limiting case
of the system placed in a fictitious nonuniform magnetic field with the vector potential
A(r) = A(q)e'@T. The wavevector q is later tended to zero, @ — 0, to recover the case
of uniform magnetic field. The nonuniform field results in inhomogeneity of the system
which induces the carrier diffusion. In the Feynman-diagram language, this fact means
the appearance of the diffusion poles. The necessity of eliminating the poles to obtain
a divergent-free expression for the Hall conductivity alg{) makes the method somewhat
cumbersome (in spite of some improvements published later [5]). Furthermore, the method
has only been formulated for evaluation of the Hall conductivity at zero wave vector.

The purpose of the present paper is to propose another quantum approach which is
convenient in the particular case of p-independent impurity scattering. The distinctive
feature of our approach is that the external magnetic field is considered to be uniform
from the very beginning. Therefore, no carrier diffusion takes place and we only have the
Feynman diagrams that do not contain the diffusion poles. In addition, the method can
be extended to finite wave vectors without any difficulties, providing an expression for
a,(f) (w,q). (Here we consider only macroscopic systems.)

Let a(x,t) and A(x) be the vector potentials of the driving electric field E = —anit
and external constant magnetic field H = V x A, respectively. The linear response to a
is known to be determined by the current-current correlation function

1/T . .
Qi3 (%, 3 iwn) = / dr < TJi(x,7)J;(x,0) >, 1)
0

where T in the upper limit of the integral is the temperature and T" in the angular brackets
is the time-ordering operator. In what follows we assume that the so-called “diamagnetic

) e-mail: edelsh@issp.ac.ru

141



part” of the response, (ne/m)d(x —y), is canceled by the appropriate part of Q;; (ana-
Iytically continued to the real frequency axis) in the usual manner. The electron charge
is considered to be —e. Then the current operator J is the sum of the kinetic part,

Jkin = — o W () V() — VY (),

and the diamagnetic part,

~ 62 +
Jaia = _m—cA(r)d} (r)(r).

For the sake of brevity, we drop the spinor indices at the field operators and Green
functions. The field H is assumed to be small so that w.r < 1 (here w, = eH/mc is the
cyclotron frequency and 7 is the mean free time) and, hence, one can neglect the Landau
quantization and use the representation for the electron Green function originally due to
Schwinger [7]

Ge(r,r';H) = exp (%/ dr' . A(r")) Ge(r—-1';0), (2)

where G¢(r — r';0) is the Green function in zero magnetic field. In this paper, the
symmetric gauge, A = %H x r, is chosen and h = 1 is set throughout. It should be
noticed that such a representation has been successfully employed in many branches of
physics, e.g. in superconductivity (8] and plasma physics [9], but never (to our knowledge)
in the theory of Hall effect in weak magnetic fields. The current operator can be written
as

Jx) = xllil'x)lxj(x,x’), J(x,x') = ¥ (x)I(x,x" )¢ (x'), 3)
J(x,x') = —e szzmva:' + 2:;wA(x +x’)] . 4)

The thermal average in (1) gives rise to a set of diagrams [10] which have the form of a two-
vertex electron loop with various impurity-line insertions and with the current operator (in
the Schridinger representation) at both these vertices. The impurity potential U(r) will
be assumed short-ranged so that < U(r)U(r') >~ 6(r — r'). If, as usually, one includes
the impurity self-energy into the electron Green function, the remaining impurity-lines
necessarily connect the upper and lower electron lines forming a given loop and can
be considered as impurity vertex corrections. Without an external magnetic field, the
evaluation of such diagrams is greatly simplified by making use of the Fourier transform.
With the magnetic field present, the translational invariance of the Green function is
broken due to the Schwinger’s factors

ie [Y ie
2x,y) =exp (£ [Tar. A(r)) —exp (H- (xxy), (5)
c Jx 2¢
making the immediate application of the Fourier method impossible. However, the general

theorem [11], that any electron loop taken as a whole has to be invariant under transla-
tions, means that the translational invariance must be recovered by explicit evaluation of
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the loop. Let us show how this happens in the case of “empty” loop (without impurity
insertions). The analytical expression for the loop contains

}}Ln J ( ,)Jj (y;yl)Q(xayl)Q(y’xl)G(x - y,)ie+in(y - xl)iea (6)

which, in view of the relations -

v, v, v, _ vV, e
Yeatxy) = 80y [ - £AW)|. P =00y) |2+ £A] ()
can be recast as
: ' ] Vm_vx’ € ' v !
lim @(x,yw(y,x){ St ALY -y =)
Yy —y
Vy'"vy’ e ' o ! Y. . WY,
X [ 5im 2ch(x+x y—-y) jG(x Y ie+iwGy — X iec. (8)

In (8), the derivatives do not act on the phase factors; therefore, one can set in the factors
y' =y and x’ = x. As a result, the product of the factors reduces to unity. Now one
should substitute into (8) the Fourier representation for the free electron Green functions
and perform the coordinate differentiations. After that one can already set y' = y and
x' = x in remaining functions. Then the total expression for the loop takes the explicitly
translational-invariant form

_e? Z [ Ax - y)] gl (x=¥) o

€,p,d1 :

L DB\ (p- NP _ €&
X Gietiw (P+ ) )Gze (P 2 ) [m ch(X y)] . (9)
The part of the response Q{}(w, q) = [ &3 (x — y)etar "'-"')Qij (x — y;w + 40) linear in
H can be written [with the help of the identity [ d3re’d™r = —i(27)3V4d(q)] as

P =% () [T (or §) ot (p- ) 2-

~Bel(p+ )6t (p-3) mxVEA,], (10)

where the superscript R(A) stands for the retarded (advanced) part of the function and
the operator Vg““ in the first term acts only on the pair of the Green functions according
to the rule VE=AGRG4 = (V,GR)GA - G*(V,G4), but not on the velocity-vertex p/m.
The operator VR“A in the second term acts to the left in the same way. Proceeding in the
same manner, one can see that the contribution of all impurity-ladder diagrams has the
form depicted in Figure. The evaluation of a(J ) is now reduced to the level of, say, the
Drude conductivity. It should be stressed that the d-functional form of the impurity-field
correlator is essential in deriving this result. Straightforward calculations yield

(H) Swer -~ iQ
(@, @) = 05 57—y euin {h”( 2 ) 1-g-iq "
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A a Y-8 i 1-8
-h -2
@ w |(58) mea -2 b (1)
where 03 = nze?r/m, n3 = p% /372, Q = wr, t = qupT/(1 —iQ), h = H/H, 3 =
=t larctant, and v = (1 + t?)~!. The known symmetric (Drude) components of the
conductivity tensor, UEJP), in the same notation have the form [12]

a-'ij)(w’(l) = 0'[( )QzQz + 0',5,.)((5,'_7' - qi@i), (12)

(3) 303' l—ﬁ —ifd 0_(3) 30’3 ,B—l—ﬂ
T T5a\ e 1o Ot T o(1-iq) 2 )

Applied to 2D electron system, our method yields

(H) H H _ (-UCT 'LQ 1
@)= eunbert's ol =ori: 5 () gy 09
0P (w,q) = oD @ds + oD (b5 — @), (14)

0(2) 20‘2 V1+t2—1 0(2)_ 20’2 :L_Q) V1+t2—1
tr T 140 t2 b T 1-an 1-(1—i)V1+1e2

(02 = nge?r/m, ny = p%/2w) which agrees with the result recently obtained [6] by means
of the 2D classical Boltzmann equation with a modified collision integral.

Aea=2(5)

4mc

a a

p+§' P+2
e C D - @D ww)

a a

P39 P—3

Fig. 1. The Feynman diagrams for the Hall conductivity. The gradient operator Vg"" in the second
term acts to the left on the pair of the Green functions GRGA. T is the usual impurity-renormalized
velocity-vertex

In conclusion, we have proposed a method for microscopic calculation of the Hall
conductivity in weak magnetic fields. In essence, the method is solely based on the
Schwinger’s formula, i.e., on the gauge transformation rules in quantum mechanics. The
diagrammatic expression for a . obtained appears to be topologically similar to that for
the Drude conductivity. Our approa,ch complements the previous one [2] in that it gives
o(w,q) at finite g but only for the p-independent scattering, while the method [2] gives
o(w,0) but for arbitrary impurity scattering. In addition, the method reported here is
hoped to provide a better handle in studying the effects of weak localization and (short-
ranged) interparticle interaction on the Hall conductivity.
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