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We formulate a set of simple sufficient conditions for the existence of Q-balls in gauge
theories.

PACS: 11.15.Kc, 11.27.+d

Abelian (-balls are non-topological solitons that accommodate some conserved global
charge at a lesser energetic toll than a collection of free scalar particles [1, 2]. They exist
in theories that preserve some global U(1) symmetry? and whose scalar potential satisfies
certain dynamical constraints.

(2-balls arise naturally in theories with supersymmetry. Supersymmetric extensions of
the Standard Model, e. g., MSSM, predict the existence of new scalar baryons and leptons
that have the requisite interactions that allow for (-balls [5]. Baryonic @-balls that form
along a flat direction in the potential [6, 7] can be entirely stable [8].

In addition to scalar interactions, the scalar fields may have gauge interactions as
well. This is the case in the MSSM, where the only scalar fields that carry a baryon
number, squarks, transform non-trivially under the color SU(3) gauge group. If the effect
of the gauge fields cannot be eliminated, the semiclassical description of the solitons may
be hampered by the complications related to confinement and other aspects of gauge
dynamics. It is important, therefore, to design a proper description of non-topological
solitons in the presence of gauge interactions. Previous treatment of supersymmetric Q-
balls ignored the effects of the gauge fields because in many cases of interest, it is sufficient
to deal with the gauge-invariant scalar degrees of freedom.

1) e-mail: Alexander.Kusenko@cern.ch, mshaposh@nxth04.cern.ch, peter@flint.inr.ac.ru
2 The conservation of a local U(1) charge [3] or a global non-abelian charge [4] can also lead to the
appearance of non-topological solitons.
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A straightforward approach to (J-balls in gauge theories would be to find a solution to
the equations of motion with a fixed global charge. With the use of Hamiltonian forma-
lism, the problem may be formulated as follows. Let the scalar fields ¢ be a (reducible,
in general) representation of some semi-simple (unbroken) gauge group G spanned by
the generators 7%. And let the scalar potential U(¢) preserve a global U(1) symmetry
¢ — eB%¢, where B is the U(1) generator that is assumed to commute with T¢. To
construct a ¢)-ball solution, one can find a minimum of the energy functional

Buoat = [ @2 [ 5B + () + 50 + 1D + U(0) (1)
with an additional condition
/d%B = /de 1-,(pr¢ - ¢'Bp) = Q. (2)
In addition, the Gauss constraint must also be satisfied,
D;Ef —T° =0. (3)

Here E® (H®) is a generic notation for the non-abelian electric (magnetic) field, D, is a
covariant derivative, p’s are the canonical momenta of the scalar fields, p = 6§£/8( Do)t =
= Dy¢, and T® are the non-abelian charge densities,

o = < (' T° ~ 41T°). @

In general, such a solution can have a non-zero non-abelian charge, with the gauge fields
dying away slowly at infinity. It is unclear how to interpret such a solution in a theory
with confinement of non-abelian charge. It is also difficult to find such solutions by solving
a complicated system of coupled non-linear field equations.

In this note we formulate a set of simple sufficient conditions for the existence of Q-
ball solutions that do not carry any overall non-abelian charge (even though the charge
densities may not vanish locally). For this type of non-topological solitons, the issues of
confinement are not essential and the semiclassical description is valid.

Let us look for a minimum of functional (1), where all gauge fields are taken to be
zero, with additional conditions (2) and (3). If the energy of a configuration found this
way is less than the energy of a collection of free scalar particles with the same charge Q,
then a @-ball does exist. A field configuration that minimizes the energy over a subspace
of classical trajectories with zero gauge fields may not, of course, be the global minimum
of energy, nor is it necessarily a solution of the equations of motion. Clearly, a conditional
minimum of energy E over a subset of configurations is greater or equal to the global
minimum over the whole functional space. If the former is less that the energy of a free-
particle state, then so is the latter. By construction, Q-balls of this type have zero gauge
charges. ,

In order to formulate the sufficient conditions, we introduce the Lagrange multipliers
X and £° that correspond to the constraints (2) and (3) (the latter is simply 7%(z) = 0
now), respectively, and reduce the problem to that of finding an extremum of

Ere = / Eoptp+ 1002 + U@)] - Al / PrB(z) - Q] - / L@y @).  (5)
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The equation of motion for p gives
p(z) = —iAB¢ — i (z)T° 9. (6)

The equations for A and £ are

I

Aot BT®¢ + £29! %{T“,T"}q& 0, a=1,..,dim(G) (7)

[ #spe B+ @' BT = Q. ®)

A Q-ball exists if the system of equations (7) and (8) has a solution, and if the
corresponding extremal value of € ¢ is less than the energy of any free-particle state with
the same charge:

Exg < Q@min{m;/b}, (9

where m; is the mass of the i’s particle, which has the global charge b;.
It is easy to see that the energy of a soliton can be found from the minimization of a
functional without the conjugate momenta,

Ey = / B2 (0:012 + Ur(0)], (10)

where R
Ur(¢) = U(¢) — A[\¢' B¢ + £2(A, ¢)¢' BT ¢, (11)

and £2(), ¢) are found from the system of equations (7). As in Refs. {2, 9], one can use the
correspondence between a @-ball in the potential U(¢) and a bounce in d = 3 Euclidean
dimensions in the potential Uy ().

These conditions simplify in the thin-wall limit, where one can approximate the Q-
ball solution by a field configuration that vanishes outside a sphere with radius R, and is
d(z) = e *ABHDt g, for |x| < R. If one defines A = 2VA/Q and £° = 2V¢%/Q, where
V = 4w R?/3, equations (7) and (8) become a system of linear equations for A and €. It
has a solution if there exists a gauge-invariant polynomial of ¢ and ¢' with a non-zero
baryon number (¢f. Ref. [10]). The condition of stability of a @-ball with respect to its
decay into the free scalar particles becomes

n;}ion VU (#0)A(go) < min{m;/b;}. (12)

For illustration, let us consider a scalar condensate associated with a udd flat direction
in the MSSM [11], where the squarks q,(lj ) have non-zero VEV’s. A color-singlet condensate
that satisfies equations (7) at €% = O can have the form ¢{) = /3,0 (z)6J. The
constraints (7) are automatically satisfied for the off-diagonal generators of color SU(3)
(in the Gell-Mann basis). The remaining two equations for 7% and T® demand that
M (z) = @ (z) = p®(2) = ¢(z). At the same time, the global Up(1) current jh(z) =

= §Qa g’ = 3A¢’(z) # 0. Of course, the vanishing of the gauge charge is

automatic for every flat direction of the MSSM and need not be verified explicitly thanks
to the general theorems [10]. The remaining condition (9) is also satisfied as long as the
scalar potential grows slower than the second power of the scalar VEV along the flat
direction.
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We have formulated the sufficient conditions for the existence of Q-balls in a class
gauge theories. Although the true ground state in the sector of fixed charge may

have non-vanishing gauge fields, its energy is less than that of the configuration we have
constructed. The latter, in turn, is less than the energy of any free-particle state with the
same global charge, which ensures the existence of a soliton.
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