
Supplemental material to the article

“Aharonov–Bohm oscillations caused by non-topological
surface states in Dirac nanowires”

1. Derivation of anisotropic Dirac Hamiltonian and symmetry restrictions for bound-

ary conditions in bismuth antimony alloys. Here we derive the k·p-Hamiltonian for electrons in
L-valley of bismuth antimony which is of the form of the anisotropic Dirac Hamiltonian. In addition
we calculate spectra of surface states for this Hamiltonian. The small group of the L-point is C2h[1].
The Cartesian system is chosen as follows: x axis is perpendicular to the mirror Γ − T − L plane,
z coincides with Γ − T direction. It is well known that in pure bismuth two-band approximation
gives adequate picture of band dispersion in L-valleys [2]. These bands are transformed according to
La = (L7, L8) and Ls = (L6, L5) irreducible representations of the C2h point group. Ls is symmetric
and La changes the sign under the inversion. We will use the invariant method [3] to derive the k·p-
Hamiltonian from the symmetry consideration. To further proceed we explicitly write down the ma-
trices of Ls,a double group representations of the C2h elements: Ds,a(E) = σ0, Ds(I) = −Da(I) = σ0,
Ds(C2(x)) = −Da(C2(x)) = −iσz , Ds,a(Mx) = −iσz ; Ds,a(g) = −Ds,a(g), where g is an element of
C2h. The invariant method requires that for any element g of the point group the Hamiltonian should
satisfy the following condition H(k) = D(g)H(g−1k)D−1(g). In the band subspace the Hamiltonian
is of the form:

H(k) =

(
Hss(k) Hsa(k)
Has(k) Haa(k)

)
. (1)

The most interesting in Eq. (1) is the non-diagonal terms that represents k·p-interaction between Ls

and La bands. The upper right term should satisfy the condition Hsa(k) = Ds(g)Hsa(g
−1k)D−1

a (g).
Direct product of Ls×L∗

a = 2L3+2L4, where L3 transforms as x and L4 as y or z. Using representation
matrices mentioned above we obtain that σ0 and σz transform as y or z, σx, σy transforms as x.
Therefore the k·p-interaction term explicitly reads as follows

Hsa(k) = (t1σx + t2σy)kx + (u11σz − iu12σ0)ky + (u12σz − iu22σ0)kz. (2)

From time-reversal symmetry follows that t1,2, u11,12,21,22 are real parameters. Hermiticity of the
Hamiltonian (1) leads to identity: Has = H+

sa. In zero order in momentum for diagonal terms of the
Hamiltonian (1) we retain only constant terms Hss = −Haa = mσ0, where 2m plays the role of the
band gap. Finally, we get the following form of the two-band k·p-Hamiltonian:

H =


m 0 u1ky + u2kz tkx
0 m t∗kx −u∗1ky − u∗2kz

u∗1ky + u∗2kz tkx −m 0
t∗kx −u1ky − u2kz 0 −m


 ,

(3)

where u1 = u11− iu12, u2 = u21− iu22, t = t1− it2. Next step to the Dirac Hamiltonian is to perform
unitary transformation Ψ̃ = UΨ with U = exp (−iβτ0 ⊗ σz − iγτz ⊗ σz) together with rotation in yz

1



plane on some angle α (5). After an appropriate choice of β, γ, and α to make u1,2 and t real positive
parameters, we arrive to the diagonal in spin and momentum form of H (3):

H̃± = mτz ⊗ σ0 ± v2k
′
yτx ⊗ σz − v3k

′
zτy ⊗ σ0 + v1kxτx ⊗ σx, (4)

where
v1= |t|

,

v2 =
√
|u1|2 cos2 α + ℜ(u1u∗2) sin 2α+ |u2|2 sin2 α

,

v3 =
√
|u2|2 cos2 α−ℜ(u1u∗2) sin 2α + |u1|2 sin2 α.

Primes under ky, kz mean that they are determined in the rotated Cartesian system. The rotation
angle α has the following value

α =
1

2
arctan

(
2ℜ(u1u∗2)

|u1|2 − |u2|2
)
. (5)

H̃± is determined up to the sign of the second term. This sign has no impact on the energy
dispersion. However it distinguishes two topologically distinct classes of the Hamiltonian (4) and is
known as a ’mirror chirality’ [4].

Finally we perform unitary transformation U± that reduces the Hamiltonian (4) to the standard
(but anisotropic) form of the Dirac Hamiltonian [5]:

HD = U±H̃±U
+
± = mτz ⊗ σ0 + v1kxτx ⊗ σx + v2k

′
yτx ⊗ σy + v3k

′
zτx ⊗ σz. (6)

U± matrices read as follows

U± =
ei

π
4√
2




−i ±1 0 0
±i 1 0 0
0 0 1 ±i
0 0 ±1 −i


 (7)

Boundary condition for the four-component wave function Ψ = (Ψc,Ψv) that obeys the 3D Dirac
equation HDΨ = EΨ can be obtain from Hermiticity of HD (6) in the restricted region and time-
reversal symmetry [6]. It is of the following form:

[
σ0Ψv − ia0

(
nxσx + ny

v2
v1
σy + nz

v3
v1
σz

)
Ψc

]

S

= 0, (8)

where nx, ny, nz are coordinates of an inner normal to a surface S in the rotated Cartesian system.
For surfaces with nx = 0 we may additionally force the BC (8) to be invariant under the mirror
symmetry Mx, if there is no surface reconstruction. For the basis of the Hamiltonian HD the mirror
symmetry operator is expressed by D(Mx) = iτ0 ⊗ σy. Invariance of the BC (8) under the mirror
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reflection imposes the following restriction on the BC operator Γ̂: Γ̂ = D(Mx)Γ̂D
−1(Mx) = eiδΓ̂,

where

Γ̂ =

(
−ia0

(
nxσx + ny

v2
v1
σy + nz

v3
v1
σz
)

1

0 0

)
, (9)

eiδ is an arbitrary phase. This results in restriction a0 = 0 if nz 6= 0. In case of nz = 0 there is
no limitation for a0. It should be noted that the reflection plane is its own for the every L-valley.
Therefore if a0 = 0 due to the mirror symmetry for one L-valley, it is not necessarily the case for
the other L-valleys. The non-reconstructed (111) surface is the only surface for which the all three
inequivalent L-valleys have mirror planes.

Further we study the spectra of surface states for the anisotropic 3D Dirac equation HDΨ = EΨ
with the BC (8) on plane surface with n = (0, 0, 1). For this surface kx, ky are good quantum
numbers. After some algebra we arrive to the following energy spectra of surface states:

E = s 2ã0
1+ã20

√
v21k

2
x + v22k

2
y +m

1−ã20
1+ã20

,

2mã0 − s(1− ã20)
√
v21k

2
x + v22k

2
y ≥ 0,

(10)

where ã0 = a0v3/v1, s = ±. Eq.(10) is an anisotropic version of surface state dispersion that are
displayed in Fig. 1 of the main text. As it was noted above the mirror symmetry forces a0 to zero.
In this case we have flat band surface state spectrum E = m.

Figure 1: Integration loop that is used for evaluation of M(a, b, z) in (23)

2. Derivation of anisotropic Dirac Hamiltonian and symmetry restrictions for bound-

ary conditions in lead tin chalcogenides. Here we derive the standard 3D Dirac Hamiltonian
[5] for L-valley of lead tin chalcogenides and analyze what constrictions if any the mirror symmetry
imposes on the BC (8). In the face-centric cubic lattice the small group of L-point is D3d. It is
considered that the two relevant spin degenerate bands transform according to L+

6 and L−
6 repre-

sentations of double group [7]. We will derive the k·p-Hamiltonian for L-valley on the [111] edge of
the Brillouin zone. Therefore it is convenient to work in a coordinate system with z||[111], y||[110],
x||[112] [8]. The basis functions of L+

6 can be chosen as |↑〉 , |↓〉 and |z ↑〉 , |z ↓〉 for L−
6 . Following

the similar procedure that was described for bismuth antimony in the previous section we obtain the
following Hamiltonian:

H = mτz ⊗ σ0 + v1(kxτx ⊗ σy − kyτx ⊗ σx) + v2kzτy ⊗ σ0 (11)
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where as usual 2m plays the role of the band gap, v1, v2 are real parameters. The order of the bands
determines only the sign of m. The operator of symmetry reflection in Γ − T − L plane for this
representation is expressed by the matrix D(My) = iτ0 ⊗ σy. Finally the unitary transformation

U1 =

(
σz 0
0 −iσ0

)
(12)

reduces the Hamiltonian (11) to the standard Dirac one:

HD = mτz ⊗ σ0 + v1(kxτx ⊗ σx + kyτx ⊗ σy) + v2kzτx ⊗ σz. (13)

The BC for the Hamiltonian (13) is of the form Eq.(8) with v2 = v1. It should be noted that the
mirror operator for the representation of the Hamiltonian (13) is D̃(My) = U+

1 D(My)U1 = −iτz⊗σy.
The mirror symmetry does not impose any restrictions on the BC for surfaces that are of the mirror
symmetry (in our case they are determined by ny = 0 with nx, nz are arbitrary) as we have

MyΓ̂Ψ
∣∣∣
S
= D̃(My)Γ̂D̃

−1(My)D̃(My)Ψ
∣∣∣
S
= −Γ̂Ψ̃

∣∣∣
S
= 0, (14)

where the BC operator is expressed by

Γ̂ =

(
−ia0

(
nxσx + nz

v2
v1
σz
)

1

0 0

)
. (15)

In the isotropic case the Eq. (15) transforms to the formula (4) of the main text.
3. Derivation of dispersion equation in magnetic field. The Dirac equation HDΨ = EΨ

and BC ΓΨ = 0 can be reduced to the problem only for ψc spinor. In nanowire with longitudinal
magnetic field the spinor components ψc1,c2 obey equations

(
− ∂2

∂r2
− ∂

r∂r
+

(j ∓ 1/2)2

r2
+
j ± 1/2

λ2
+

r2

4λ4

)
ψc1,c2 = (E2 −m2 − k2z)ψc1,c2, (16)

and BC:

 ikz

[
∂r +

j+1/2
R

+ R
2λ2 + a0(E +m)

]
[
∂r − j−1/2

R
− R

2λ2 + a0(E +m)
]

−ikz



(
ψ(1)
c (r)
ψ(2)
c (r)

)∣∣∣∣∣∣
r=R

= 0. (17)

where we take into account conservation of longitudinal quasi-momentum kz and total angular mo-
mentum projection j. After substitution

ψ(1,2)
c = ξ|j∓1/2|/2 exp(−ξ/2)w1,2(ξ), (18)

where ξ = r2/2λ2 functions w1,2(ξ) satisfy the degenerate hypergeometric equation:

ξw′′
1,2 + (|j ∓ 1/2|+ 1− ξ)w′

1,2 +

(
∆− |j ∓ 1/2|+ (j ± 1/2) + 1/2

2

)
w1,2 = 0, (19)
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where ∆ = λ2
(
E2 −m2 − h̄2v2k2z

)
/2h̄2v2. Therefore normalizable solution in the limit r → 0 is

expressed via Kummer’s function M(α, β, ξ):

ψ(1,2)
c (r) = C1,2

(
r√
2λ

)|j∓1/2|
e−

r2

4λ2M
(
−∆+ |j∓1/2|+(j±1/2)+1

2
, |j ∓ 1/2|+ 1, r2

2λ2

)
. (20)

We are interested in spectra for j ≤ −1/2. Substitution of the wave function (20) in the BC (17)
allow us obtain the dispersion equation:

[
2j − 1− a0R(E +m)M̃

]
·

 R2k2

2
(
j − 1

2

) +
a0R(E +m)

M̃


+ k2zR

2 = 0, (21)

where

M̃ =
M(1−∆,−j + 3/2, R2/2λ2)

M(−∆,−j + 1/2, R2/2λ2)
. (22)

4. Surface states spectra in strong magnetic field. In this section we derive approximate
spectra of surface states in strong magnetic field limit. For that we use an integral representation of
Kummer’s function M(a, b, z) [9] (for the case Re(b− a) > 0):

M(a, b, z) = − 1

2πi

Γ(b)Γ(1 − a)

Γ(b− a)

∫ (0+)

1
ezt(−t)a−1(1− t)b−a−1dt (23)

where integration is performed in a closed loop in the complex t-plane starting from the point t = 1
and going-round zero in positive direction. For evaluation of M(...) we choose the loop shown on
Fig. 1. Therefore the integral in Eq. (23) can be expressed as follows:

∫ (0+)

1
=
∫ ρ

1
+
∫

Cρ

+
∫ 1

ρ
=
∫

Cρ

+
(
ei2πa − 1

) ∫ 1

ρ
, (24)

here circle of radius ρ should be chosen so that integral in Cρ would be much smaller than integral
from ρ to 1 (and a does not equal to integers that is the case for surface states). We show that this
condition can be satisfied in the limit z ≫ b, z ≫ a. For parameters of M(...) in dispersion Eq. (21)
this limit is: 




Φ
Φ0

≫ |j − 1/2|
Φ
Φ0

≫ λ2(E2 −m2 − k2z)/2

|j − 1/2| > λ2(E2 −m2 − k2z)/2.

(25)

Now we calculate the second integral (after the second equality) in Eq. (24) by the Laplace method.
This integral we represent as follows:

∫ 1

ρ
eztta−1(1− t)b−a−1dt =

∫ 1

ρ
ezt+(a−1) ln t+(b−a−1) ln(1−t) ≡

∫ 1

ρ
eg(a,b,z;t), (26)

where the last equality should be considered as definition of a function g(a, b, z; t). In the case under
consideration (25) the function g(a, b, z; t) in the above Eq. (26) has an abrupt maximum t0 in the
interval (ρ, 1):

t0 =
z − b+ 2

z
− 1− a

z − b+ 2
. (27)

5



Therefore we evaluate integral as follows

∫ 1
ρ e

g(a,b,z;t) ≈
√

2π
|g′′(a,b,z;t0)|e

g(a,b,z;t0) =
√

2π(b−2)
z2

ez−b+2− z(1−a)
z−b+2

(
z−b+2

z
− (1−a)

z−b+2

)a−1 (
1− z−b+2

z
+ 1−a

z−b+2

)b−a−1
.

(28)
The value ρ is chosen so that the integral over circle Cρ would be much smaller than the integral
over interval (ρ; 1):

∫

Cρ

eg(a,b,z;t) ≈ eρzρa−1 ≪ (ei2πa − 1)
∫ 1

ρ
eg(a,b,z;t) ≈ ez−b+2

√
2π(b− 2)

z2
. (29)

The condition (29) can always be fulfilled for surface states (a 6= 0; −1; −2; −3; . . . ) in the limit
under consideration (25). After substitution of approximation (28) in (21) and retaining leading
terms, we obtain the spectrum of surface subbands in the strong magnetic field limit (25):

Ekzjs = svh̄

√

k2z +
(j + Φ− 1/2)2

R2
+ E0, (30)

where Φ = πeBR2/hc is the number of the magnetic flux quanta through the wire cross section,
v = 2ac/(1 + a2), E0 = mc2(1− a20)/(1 + a20). This spectrum holds true under conditions (25).

5. Surface states density of states. Here we calculate density of surface states in a quasi-
classical limit |κR/j| ≫ max (|j|, |Φ|) and in the limit of strong magnetic fields (25). For both limits
spectra of surface subbands can be represented as follows:

Ekzjs = svh̄

√

k2z +
(j + Φ− γB)

2

R2
+ E0, (31)

where γB = 0 in quasiclassical limit, and γB = 1/2 in the limit of strong magnetic fields. Therefore
for density of surface subbands in the Lz-length nanowire can be represented as follows:

D(E) =
∑

(kz ,j)∈G
δ(E − Ekz ,j) =

=
∫
Lzdkz
2π

∫
dx
∑

j

δ
(
x− j

R

)
δ(E − sh̄v

√
k2z + (x+ (Φ− γB)/R)2 −E0) =

=
LzR

2π

∞∑

n=−∞

∫
dx
∫
dkze

i2πRnx−iπnδ(E − sh̄v
√
k2z + (x+ (Φ− γB)/R)2 −E0) =

=
LzR

2π

∞∑

n=−∞

∫
dx′

∫
dkze

i2πRnx′−i2πΦn+i2πγBn−iπnδ(E − sh̄v
√
k2z + x′2 −E0) =

=
LzR

2π

∞∑

n=−∞

∫ 2π

0
dθ
∫
kdkei2πRnk sin θ−i2πΦn+i2πγBn−iπnδ(E − h̄vk −E0) =

= Θ
[
(E − E0) sgn(a0(a

2
0 − 1)) + h̄vke

] LzR (E −E0)

2π(h̄v)2
×

×
∞∑

n=−∞
e−i2πΦn+i2πγBn−iπn

∫ 2π

0
dθei2πRn((E−E0)/h̄v) sin θ =
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= Θ
[
(E −E0) sgn(a0(a

2
0 − 1)) + h̄vke

] LzR (E −E0)

2π(h̄v)2
2π×

×
(
1 + 2

+∞∑

n=1

J0

(
2πR(E − E0)n

h̄v

)
cos (2πΦn− 2πγBn+ πn)

)
=

= Θ
[
(E −E0) sgn(a0(a

2
0 − 1)) + h̄vke

] LzR (E −E0)

2π(h̄v)2
2π×

×

1 + 2

√
h̄v

π2R(E −E0)

+∞∑

n=1

cos
(
2πR(E−E0)n

h̄v

)

√
n

cos (2πΦn− 2πγBn+ πn)


 , (32)

where region for integration in all formulae is G = {s
√
k2z + (j + Φ− γB)2/R2 > ke}, ke =

2|a0|m/ch̄|1 − a20|, J0(x) is Bessel function of the first kind. In the last equality in Eq.(32) we
use asymptotes of J0(x) at x≫ 1.
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