
Supplemental material to the article

“Transport Processes in Metal with Hot Electrons Excited
by Laser Pulse”

1. Partial contributions to thermal resistance. As it was pointed out in the
main text, energy transport in the d-metals is connected mainly with s-electrons.

Dominating contribution to thermal resistance make si, ss, and sd interactions.
Collision frequency of an s-electron is equal to ν = νsi + νse = νsi + νss + νsd. This

relation follows from the Matthiessen’s summation rule for the thermal resistances
S = κ−1 = κ−1

si + κ−1
se . At the same time, the electron-electron contribution is

Sse = κ−1
ss +κ−1

sd , where κ is the electron thermal conductivity. Below we consider first
the se-interaction and then the si-interaction. Sum total of these two contributions
results in the graphs presented in Fig. 5 of the main text.

2. General expressions for electron-electron collision frequency. The
resistance Sse is determined by the electron-electron collision frequency. Consider

a collision of s-electron having momentum p with electron having momentum p′:
p+p′ → (p+q)+(p′−q). Here q is the transmitted momentum. Collision frequency

of an s-electron possessing the momentum p with s- or d-electrons equals

ν(p) =
2π

h̄

∫

|Uq|2
d3q

(2πh̄)3

∫ 2d3p′

(2πh̄)3
Φ δ, (1)

where Uq = 4πe2h̄2/[q2 ǫ(q)] is the matrix element of screened electron-electron
interaction and ǫ(q) is the dielectric constant. In Thomas–Fermi approximation:

ǫ(q) = [1 +K2 h̄2/q2]−1, where the screening constant is K = K(Te, x), and ρ/ρ0 is
the nondimensional density. Correspondingly, the matrix element in (1) takes the

form Uq = 4π e2 h̄2/[q2 +K2h̄2].
The factor Φ in (1) is linked to the statistical properties. It depends on the distri-

bution functions of s- and d-electrons. In the ss- and sd-cases we have, respectively:

Φ(p,p′,q) = fs(p
′)[1− fs(p+ q)][1− fs(p

′ − q)] +

+ fs(p+ q)fs(p
′ − q)[1− fs(p

′ − q)],
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Φ(p,p′,q) = fd(p
′)[1− fs(p+ q)][1− fd(p

′ − q)]+

+ fs(p+ q)fd(p
′ − q)[1− fd(p

′)],

where fs and fd are the Fermi distribution functions of s- and d-electrons. In what

follows we will consider the sd case only since the ss-collisions were described in [7]
of main text.

Delta function

δ = δ[ε(p) + ε′(p′)− ε(p+ q)− ε′(p′ − q)]

in (1) is the energy conservation law.
3. Simplification of the sixfold integral. In our calculations two-parabolic

approximation of the electronic spectrum obtained from the DFT simulation (see
Ref. [32] in main text) is used. This makes it possible to reduce the order of inte-

gration in (1) from six to two. The law of energy conservation for two-parabolic
spectrum says:

εs +
(p+ q)2

2ms
+ ε1 +

(p′ − q)2

2md
= εs +

p2

2ms
+ ε1 +

p′2

2md
,

where εs, ε1, ε2 are the bottom of the s-band, the upper and the lower edges of the
d-band, respectively, counted from the Fermi level; see the main text, where the

letter E is used in place of ε used here. Let us denote

α =
p2

2ms
− (p+ q)2

2ms
, β =

(p′ − q)2

2md
− p′2

2md
,

and ε = p2/2ms, ε
′ = p′2/2md. Performing calculations, we obtain the statistical

factor for sd-scattering in the following form

Φ(ε, ε′, α, β) = fd(ε
′)[1− fs(ε− α)][1− fd(ε

′ + β)] +

+ fs(ε− α)fd(ε
′ + β))][1− fd(ε

′)],

where the Fermi-functions of s- and d-electrons are

fs ≡ f(εs, ε, µ, Te) = [exp

(

εs + ε− µ

kBTe

)

+ 1]−1,
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fd = f(ε1, ε
′, µ, Te). Substituting the distributions f into Φ, one obtains

Φ(ε, ε′, α, β) =
exp

(

ε1+ε′−µ
kBTe

)

exp
(

εs+ε−α−µ
kBTe

)

+ 1
×

×
exp

(

εs+ε+β−α−µ
kBTe

)

+ 1
(

exp
(

ε1+ε′+β−µ
kBTe

)

+ 1
) (

exp
(

ε1+ε′−µ
kBTe

)

+ 1
) .

With this result, the delta function of energy conservation in (1) is simplified to
δ(α−β). The collision frequency of s-electron having momentum p, with d-electrons

can be presented by the integral

ν(p) =
2π

h̄

∫





4πe2h̄2

q2 + κ2(Te, x)h̄
2





2
d3q

(2πh̄)3
×

×
∫

Φ(ε, ε′, α, β)δ(α− β)
d3p′

(2πh̄)3
. (2)

The six-fold integral appearing in (2) can be reduced to the two-fold one. This
permits to construct a computer code for calculation of thermal conductivity using

the system Mathematica. The convenience of such code lies in the fact that it per-
mits to vary initial parameters, screenings and temperature Te and thus to estimate

significance of such variations.
4. Reduction of the integration order. Let’s introduce the polar angle θ

and the azimuthal angle φ of the vector of the transmitted momentum q. Let’s take
that the angle between p and q is the angle θ. Then upon integrating with respect

to the azimuthal angle φ from 0 to 2π we obtain d3q = 2π q2 dq dt (t = − cos θ). In
accepted variables we have

α = (2 p q t− q2)/2ms, dt = (ms/p q) dα. (3)

The integral with respect to α is calculated from −(2p q + q2)/(2ms) to (2p q −
q2)/(2ms).

Further let us introduce, for given q, the polar angle θ′ and the azimuthal angle
φ′ of the vector p′. The angle θ′ is the angle between the vectors p′ and q. Hence
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d3p′ = 2π p′2 dp′ dt′ (t′ = − cos θ′), and

β = (2p′ q t′ + q2)/(2md), dt′ = (md/p
′ q) dβ. (4)

Using substitutions (3), (4), the part

d3q

(2πh̄)3
2d3p′

(2πh̄)3
Φ(ε, ε′, α, β)δ(α− β)

of the integrand for ν(p) in (2) can be transformed to the form

dq

(2πh̄)3
2dp′

(2πh̄)3
×

× 2πms

p
2πmd p

′Φ(ε, ε′, α, β) δ(α− β) dα dβ. (5)

After integration of (5) over β we obtain

dq

(2πh̄)3
2dp′

(2πh̄)3
2πms

p
2πmd p

′Φ(ε, ε′, α) dα, (6)

where the statistical factor is

Φ(ε, ε′, α) =
exp

(

ε1+ε′−µ
kBTe

)

exp
(

ε1+ε′−α−µ
kBTe

)

+ 1
×

×
exp

(

εs+ε−µ
kBTe

)

+ 1
[

exp
(

εs+ε−α−µ
kBTe

)

+ 1
] [

exp
(

ε1+ε′+α−µ
kBTe

)

+ 1
] .

It is significant that the indefinite integral (6) with respect to α is integrated ana-
lytically

∫

Φ(ε, ε′, α) dα =
exp

(

εs+ε−µ
kBTe

)

+ 1

exp
(

µ−ε1−ε′

kBTe

)

+ 1
×

× kBTe

exp
(

εs+ε−µ
kBTe

)

exp
(

ε1+ε′−µ
kBTe

)

− 1
×
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× ln
exp

(

α
kBTe

)

+ exp
(

µ−ε1−ε′

kBTe

)

exp
(

α
kBTe

)

+ exp
(

εs+ε−µ
kBTe

)

∣

∣

∣

∣

∣

∣

∣

∣

α2

α1

.

The limits of integration, α1 and α2, are determined from the restrictions imposed
by sd→sd scattering and by a non-zero result of integration of (5) with respect to

β. The integration (5) contains δ-function. The sd→sd scattering is restricted upon
the value of the quantity ε1 + (p′ − q)2/(2md). This quantity must belong to the
interval [ε1, ε2]. This restriction is

0 ≤ p′2 + 2p′ q t′ + q2

2md
≤ ε2 − ε1.

Here ε2 − ε1 is the width of d-band. Denominating pd =
√

2md(ε2 − ε1) – the
borderline momentum of d-electron, we obtain the limits p ≤ pd and p′2 + 2p′ q t′ +
q2 ≤ p2d. These expressions bound the value t′ : t′ ≤ t0(p

′, q) = (p2d− p′2− q2)/(2p′ q).
Depending on the position of point t0 relative to the interval [−1, 1] two situations

are possible:

In the case 1 we have t0 > 1. In this case the variable t′ runs across whole interval
[−1, 1].

In the case 2 we have −1 ≤ t0 ≤ 1, then t′ is bounded between the limits:
−1 ≤ t′ ≤ t0.

Corresponding intervals of integration with respect to β follow from (4). Consid-

ering now all options of integration with respect to β in (5) with function δ(α− β),
making nonzero contribution (note that α should be situated within the interval of

integration with respect to β), we obtain various regions of two-dimensional inte-
gration in the plane of variables p′, q for the given momentum p. In doing so, the

momentum p of an electron is a parameter.
5. Onsager’s coefficients. Performing two-dimensional numerical integration

with respect to p′ and q, over the above described regions, we determine the collision
frequency ν(p) of s-electron having momentum p with d-electrons in the process
sd→sd (the process ss→ss was described in [7]). This frequency is used hereafter in

the set of kinetic equations for heat flux and electric current density expressed in
terms of Onsager coefficients. We require the absence of electric current. Then the
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coefficient of heat conduction κ can be expressed as

κ(Te, x) =
1

Te



I2 −
I21
I0



 ,

where

I0 =
1

3π2h̄3m2
s

∫ p4

ν(p)

(

−∂fs
∂ε

)

dp,

I1 =
1

3π2h̄3m2
s

∫ p4

ν(p)

(

−∂fs
∂ε

)

(ε− µ)dp,

I2 =
1

3π2h̄3m2
s

∫ p4

ν(p)

(

−∂fs
∂ε

)

(ε− µ)2dp.

Here ε = εs + p2/2ms,

−∂fs
∂ε

=



4kB Te cosh
2





εs + p2/(2ms)− µ

2kBTe









−1

.

6. Effective frequency. We see thus that the thermal conductivity coefficient
κ(Te, x) is expressed in terms of above calculated collision frequency ν(p), depending
on electron momentum p. Knowing coefficient κ we find effective collision frequency

ν(Te, x). The frequency ν(Te, x) will be necessary below in section 9 for calculation of
electron-electron contribution to electric resistance r. To calculate effective frequency

ν we use the Drude formula ν(Te, x) = Cs(Te, x)[v(Te, x)]
2/κ(Te, x), where Cs is

the s-electron heat capacity at constant volume. For Thomas–Fermi screening the

electron-electron collision frequencies may be approximated as:

νss(Te, x) = 0.623 x t2
1 + 4.034 t0.7439

1 + 1.2178 t2.0939
,

νsd(Te, x) = 5.32 x exp

(

−1.738

t

)

1 + 1.64 t−0.761

1 + 0.0384 t0.673
.

Here frequencies ν are in units 1015 s−1 = 1/ fs. These expressions are the approx-

imations of results of the numerical integrations performed according to the above
described scheme. Here t = 6Te/εF = 6Te/(εF0 x), εF is the Fermi energy, εF0 is
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the Fermi energy at relative density x = 1, x = ρ/ρ0, ρ0 is density of copper at
T = 0, p = 0. The discussion of the dependence of Fermi energy εF (x) on density is

presented in the next section.
In the present calculations the value ε2 equals to 2.1 eV; the ε2 is the gap be-

tween the upper edge of the d-band and the Fermi level. Note that e−1.738/t =
exp(−2.7/(Te [eV])) at εF0 = 9.2 eV. The value 2.7 eV is larger than the gap

ε2 = 2.1 eV. Likely, this is connected with the preexponential factor and with the
fact that at the temperatures Te below ∼ 1 kK the integration in section 4 using
Mathematica system is performed with great difficulty. The above presented ap-

proximate formulae provide reasonable accuracy for electron temperatures up to
∼ 5 eV.

7. Final expression for electron-electron contribution to thermal con-

ductivity κse of copper. Let us make an estimate of dependence of thermal

conductivity κse = 1/Sse on density. Then we use the expression for Sse together
with the si contribution to find thermal resistance of copper S = Ssi+Sse in the 2T

states.
In the low temperature case we have

κse(Te, x) ∼ n kB
kBTe

εF
v2F

h̄

εF

(

εF
kBTe

)2

∼

∼ n kB
h̄ vF
pF

εF
kBTe

∼ h̄ kB
n

ms

εF
kBTe

. (7)

Here kB is Boltzmann constant, εF , vF , pF are energy, velocity, and momentum of

Fermi, respectively. They depend on density. The letter ms is effective mass of
s-electrons. We performed simulations using the density functional theory (DFT)

for gold (see [16] in the main text). It was found [16] that Fermi energy εF increases
with atomic concentration n as εF ∝ n. Let’s repeat here again that we call εF the

difference between the chemical potential at Te = 0 and the bottom of the s-band.
We increase or decrease atomic concentration by the “cold” compression/refraction.
During this process the FCC crystal of gold is homogeneously compressed/expanded

at Te = Ti = 0. Similar is the situation with the x-dependence of εF in case of copper
(Cu).
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Therefore in case of Cu near the density x = 1 we also have the scaling on density
εF = εF0 x, where εF0 is Fermi energy at zero external pressure. This scaling is

εF = (3π2 Zs n)
2/3 h̄2

2ms
= (3π2 Zs0 n0)

2/3 h̄2

2ms0

n

n0
.

In theoretical calculations, we assume that Zs = 1 at low temperatures. The condi-
tion Zs = 1 remains during the “cold” (Te = Ti = 0) density variations in our range

of compressions/expansions.
In compliance with the previous statement the s-electron effective mass scales as

ms = ms0 x
−1/3.

In our theoretical calculations we do not consider deformation of electron spec-
tra caused by increase of electron temperature. But our QMD-KG computations

presented in the main text of course include these deformations. The calculations
of two-parabolic approximation of electron density-of-states (DoS) for the two-band

metals are based on the quantummodeling using DFT for metal at zero temperature.
Using the scaling mentioned above ms = ms0 x

−1/3 and the expression (7), we

obtain for the low-temperature limit: Sse(Te, x) ∝ x−4/3(kBTe/εF ). Now we can
apply this scaling as function of x for the thermal resistivity Sse. We use the points
of ss and sd contributions to thermal conductivity which were computed by the

method from sections 2–5. As a result, we select an analytical approximation of
thermal resistivity

Sse(Te, x) = x−4/3 a0 t/(1 + b0
√
t+ b1 t+ b2 t

2) (8)

in the units of [m K/W] with the coefficients a0 = 3.803 · 10−4, b0 = −1.9916,

b1 = 1.353, b2 = 0.03954. At fixed density, the electron spectra only slightly depend
on a structure factor for given ion configuration. Due to that we use in further

calculations of the sums Ssi + Sse the same expression Sse (8) for crystal and for
liquid.

8. Electron-ion interaction. Thermal conductivity of crystal. Effect of

density. We write the expression for the contribution of electron thermal conduc-
tivity which is consequence of electron-ion interaction, in the form

κsi ∼ Csv λsi ∼ n kB C(t) vF λsi, (9)
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where Cs is thermal capacity of electrons of the copper s-band, v is mean electron
velocity, λsi is the mean free path for s-band electrons; v = (v2F + 3kBTe/ms)

1/2 =

vF (1 + t/4)1/2, msv
2
F/2 = εF , εF = εF0 x, ms = ms0/x

1/3, vF = vF0 x
2/3. A function

C(t) = t (1 + 11.202 t2)/(1 + 3.346 t2.05)

is introduced here for copper in analogous manner as it was done for gold in [22] of

the main text. The mean free path of s-electrons is equal to λsi = 1/(nΣ), if we
consider only scattering caused by electron-phonon collisions. Here Σ is an effective

cross-section: Σ ∼ u2
0 Ti/θ, u

2
0 ∼ h̄2/(M kB θ) is a square of the zero temperature

oscillations of atoms with the mass M, and θ is Debye temperature. Thus we have

λsi ∼


n
Ti

θ

h̄2

M kB θ





−1

∼ M kB
h̄2 Ti

θ2

n
∼ θ2

nTi
. (10)

Debye temperature θ depends on density. To define this significant dependence, we

represent the cold curve of pressure as a function of density in the form of the two
power law terms pc(x) = (A/V0)(x

a+1 − xb+1), where x = ρ/ρ0 = V0/V, V is the

volume of one atom, and V0 is initial volume per one atom at P = 0 and T = 0.
Lattice energy of one atom εc(V ) = (A/a) [xa − (a/b) xb] has a minimum at x = 1.
The powers a = 1.826 and b = 1.788 were found using the cold curve of pressure.

The cold curve has been obtained from the wide-range equation of states (EoS)
[27–29].

To check an accuracy of the approximation pc(x) selected above, we have reckoned
the sublimation curve

pc(n) + 3 Γ(n)n kB T = 0, Γ(n) = −d ln θ/d lnV (11)

at temperatures T > θ. Here Γ is Grüneisen parameter for ion subsystem. The curve
(11) is called also the zero isobar or the coexistence curve between solid state and

gas or the sublimation curve. The sublimation curve obtained from our two-terms
approximation is in good agreement with the sublimation curve, which corresponds

to the EoS [27–29].
Debye energy is kB θ = h̄ cs kD, where kD = (6π2 n)1/3 is Debye wavenumber,

cs ∝
√

K/(M n) is sound velocity, K = −V dpc/dV is a bulk modulus. After
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substitution of the expressions listed above in θ2 ∝ c2s k
2
D and differentiation of the

expression for cold curve of pressure pc by V, we obtain

θ2(x) ∝ x2/3 y, y(x) =
(a+ 1) xa − (b+ 1) xb

a− b
. (12)

The function y ∝ (x− xmin) becomes equal to zero together with the bulk modulus
K and sound velocity in the minimum of the pressure cold curve pc(x) at xmin =

[(b+1)/(a+1)]1/(a−b) = 0.7, Vmin = 1.43 V0. In this point the copper spinodal [27–29]
touches the axis T = 0.

The potential well where atoms are oscillating, becomes wider with strain due to
decreasing of the modulusK. The decrease of the modulusK is caused by decreasing

of density x as it tends to the minimum xmin. Accordingly, at fixed temperature (the
regime of isothermal strain) the amplitude of thermal oscillations grows because

the well becomes wider. This is a factor acting in direction to the increase of the
collision frequency. Mean free path λsi ∝ θ2 ∝ (x− xmin) (10) becomes shorter, and
therefore the thermal conductivity κsi (9) decreases.

Now we consider a function

ȳ = (1 + ζ)x2a+1/(1 + ζ xa+1), ζ = (a− b)/(b+ 1).

The function ȳ(x) is close to the function y(x) at the vicinity of the point x = 1,
but the former is always positive at x > 0, in opposition to y(x).

At hydrodynamic modeling of laser ablation of a target in the surrounding vac-
uum, there is a tail of a rarefaction wave where density strongly decreases. To

exclude the troubles with the 2T thermal conductivity during simulations caused
by this effects, we replace the function y in (12) by the function ȳ. In that way, we

avoid appearance of small thermal conductivities at the densities near the value xmin

which corresponds to rather high densities xmin = 0.7.

We substitute the function ȳ instead of y in the expression for mean free path (10)
and thermal conductivity (9), which both are related to the s-electron scattering on
phonons. After substitution, we obtain

λsi ∝ [ȳ(x)/x1/3]/Ti, κsol
si ∝ x4/3 ȳ C(t)/Ti. (13)
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In (13) the prime “sol” is necessary to emphasize that the expression given above is
obtained for solid state. The thermal conductivity of molten Cu is considered below

separately.
The experimental value of thermal conductivity on the sublimation curve at the

room temperature Trt = 293K and density ρrt = 8.94 g/cc is κrt = 401W/(m K).
Therefore, thermal conductivity of copper in solid phase is given by expression

κsol
si (Te, Ti, ρ) = κrt

(

x

xrt

)4/3 ȳ(x)

ȳ(xrt)

Trt

Ti

C(t)

C(trt)
,

where xrt = ρrt/ρ0 is relative density at the room temperature Trt, ρ0 = 9.02g/cc is

the density of copper at T = 0 and P = 0, trt = 6 kB Trt/(εF0 xrt).
As a result, we have for thermal conductivity of solid phase the expression:

κsol(Te, Ti, ρ) = [Sse(Te, x) + 1/ksolsi ]
−1, (14)

where thermal resistivity Sse corresponding to s-electron heat transfer, appears as a
result of collisions of s-electron with s- and d-electrons. The resistivity Sse is given

by the formula (8). The dependencies (14) are used to obtain the curves 1–3 in
Fig. 5 of the main text.

9. Electrical conductivity of crystal. We reckon the electrical resistivity r

of copper as a function of temperatures Te and Ti and density. Firstly, we write the
expression from Drude theory for contribution of si collisions to electrical resistivity

and, at the second step, we derive the general expression, where the contribution of
se collisions is also taken into account. The resistivity rsi is equal to

rsi =
ms v

Zs n e2 λsi
=

(3π2)1/3

2π

R0

√

1 + t/4

Zsn2/3λsi
. (15)

In (15) Zs is the number of s-electrons per atom, v – mean velocity of s-electrons,
λsi is the mean free path of s-electrons when the scattering due to electron-phonon

interaction is considered, R0 = h/e2 = 25812.8 Ohm is von Klitzing constant. In
(15) we use our estimation of mean velocity which has the form ms v = pF

√

1 + t/4,

pF = pF0 x
1/3. The expression for pF is written in the form which is similar to

the expression εF = εF0 x. The origin of the factor
√

1 + t/4 are discussed in the
definition of the formula (9) in section 8.
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We substitute the expression for λsi (13) in (15). In addition, we divide the
expression (15) by the value of copper resistivity at room temperature rrt =

16.78 nanoOhm ·m. At room temperatures we can neglect the contribution of the
se collisions. As a result, we have

rsi(Ti, x) = rrt
Ti

Trt

(

xrt

x

)1/3 ȳ(xrt)

ȳ(x)

√

1 + t/4. (16)

Taking into account also the contribution of electron-electron collisions, we derive
the expression for the net electrical resistivity for copper in solid state:

rs(Te, Ti, x) = rsi(Ti, x) + rse(Te, x) =

= rsi(Ti, x) + rat
ms0

m

νsd(Te, x) + νss(Te, x)

Zs(Te, x)n0 a3B νat
. (17)

Here νat = me4/h̄3 = 4.1 · 1016s−1 is atomic unit of frequency, m is mass of a free

electron in vacuum, ms0 is effective mass of s-electon at x = 1, aB is Bohr radius,
rat = (mνat)/(a

−3
B e2) = ν−1

at = 2.42 ·10−17 sec is atomic unit of electrical resistivity in

CGSE units. In units of SI we have rat = 217.3 nanoOhm ·m. Effective frequencies
νss and νsd are reckoned in section 6. The curves 1–3 in the Fig. 3 of the main text
are obtained by the formula (17) without the term νss.

10. Electrical resistivity of liquid. To describe electron-ion interaction in
liquid copper, one have to use (i) experimental data, (ii) the value of resistivity

rQMD = 0.74µOhm ·m for the point with equilibrium (Te = Ti = T ) temperature
T = 7.5 kK; the point is shown in Fig. 1 of the main text, and (iii) the estimate of

electrical resistivity in the critical point of copper: 4–6 µOhm ·m (see [30] in the main
text). We assume that the mean free path of electrons due to electron-ion scattering

λ
liq
si can be factorized as in the case of solid state: λ

liq
si = n

−1/3
0 xβ−1/3/w(Ti). We

select a function w using the three sources of data listed above. In order to do that,

we write the Drude formula for electrical resistivity which contains a mean free path.
We use the same scheme as for the case of (15)

r
liq
si (Ti, Te, x) =

pF
√

1 + t/4

Zs(Te, x)n e2 λ
liq
si

,
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but the formula for λ is replaced. Thus,

r
liq
si (Ti, Te, x) =

(3π2)1/3

2π

R0

n
1/3
0

√

1 + t/4

Zs(Te, x)

w(Ti)

xβ+1/3
. (18)

If the conditions (ii) and (iii) are satisfied near the isotherm of the temperature
close to the critical point temperature Tc ≈ 8 kK, then we can write an equation
which allows us to determine the power β : rc/rQMD = (ρQMD/ρc)

β+1/3, where

rc ≈ 6µOhm ·m is the electrical resistivity in the critical point, ρc ≈ 2.5 g/cc is the
density in the critical point of Cu, rQMD is the resistivity in the point QMD-KG

presented above (see Fig. 1 of the main text), ρQMD = 8 g/cc is the density in this
QMD-KG point.

Solving this equation, we determine that β(Ti = 8 kK)+1/3 = 1.8. This result is
in accordance with the slope of electrical resistivity curve shown in Fig. 1 of Clerouin
et al. work (Phys. Rev. B 71, 064203 (2005)). According to this work, the slope

β + 1/3 weakly decreases in the interval of densities 2 ÷ 8 g/cc with increase of
equilibrium temperature from 10 to 30 kK. This condition can be satisfied by using

of the simple monotonically descending function β = 2.4/(1+ 0.35Ti/Tc). Thus, for
the case of liquid Cu in the region of temperatures Ti = 2 kK, moderately above

the triple point, the slope of a function r ∝ 1/xβ+1/3 on the isotherm is equal to
−d ln r/d lnx|T i|x=1 ≈ 2.2 in the point x = 1.

We emphasize that the dependence of electrical resistivity on density is very
strong for the crystal (16): −d ln r/d lnx|T i|x=1 ≈ 5 (!). This slope was obtained
from the cold curve for pressure described in section 8. This cold curve has two

terms: xa (compression) and xb (strain). Our two term approximation is rather
good to describe the cold and sublimation curves of copper. Therefore, the sound

velocity cs, the bulk modulus K and the force constant γ in the interval xmin <
x < 1 are reproduced with sufficient accuracy till the minimum of the pressure

cold curve xmin ≈ 0.7. The force constant defines the behavior of crystal field near
the minimum of the potential u = γ (r − req)

2/2, where req is the position of an

atom in the lattice site. In Debye theory of crystal the well-known relations are
satisfied θ2 ∝ (cskD)

2 ∝ K/x4/3, K = (A/V0)(a− b) y, y ≈ ȳ. In our case, we obtain
d lnK/d lnx|T i|x=1 ≈ 4.6.
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In addition, the expression γ = Mω2 allows us to find out the relation between
the force constant γ and the frequency of oscillations ω of an atom in the potential

well. We can write for a crystal that γ ∼ Mω2
D, where ωD is Debye frequency:

ωD = kB θ/h̄, θ2 ∝ x2/3 y. This means that d ln γ/d lnx|T i|x=1 ≈ 5.3. In other words,

the potential well becomes more shallow when density is descending and reaches the
absolute flatness at x = xmin = 0.7 (softening of a crystal as a result of its volume

expansion). Thus, due to the formula (10) the strong dependence of the mean free
path on x is followed. As we can see, the slope of an electrical resistivity r as a
function of x is significantly decreased when copper change its state from solid to

liquid.
The function w in (18) is determined using the data for the isochore of density

8 g/cc for the molten copper. We set a requirement that the resistivity (18) should

be equal to r
liq
si = 0.3µOhm ·m at Ti = Te = 2 kK and rQMD = 0.74µOhm ·m in

the point Te = Ti = 7.5 kK of this isochore. The temperatures under consideration
are relatively small, thus we can neglect the contribution of the electron-electron

collisions to an electrical resistivity at this range of temperatures. In addition, we
require the fast saturation of the resistivity growth at the temperatures greater than

10 kK. As a result, we obtain w(Ti) = 0.0043(1 + 126Ti/Tc)/(1 + 0.86Ti/Tc), which
is valid for a liquid phase in the temperature interval below 10 kK. According to the
data of the carried out calculations and experiments (see Fig. 2 for Aluminum in the

Ref. [39] in the main text and Fig. 1 of the Clerouin et al. work (PRB 71, 064203
(2005) for copper), the resistivity of copper is almost constant at the temperatures

higher than 10 kK and the densities ρ ∼ ρ0.
In the 2T states with high electron temperatures, there are necessary to take

into account the electron-electron collisions. In our model, this contribution is in-
dependent on the particular phases (solid or liquid) of copper. Thus, we can get

this contribution from the expression (17) obtained for a crystal. Combining the
formulae (17) and (18), we have the result for electrical resistivity of liquid copper
in the 2T states which has the form

rliq(Te, Ti, x) = r
liq
si (Ti, x) + rse(Te, x).

The curves 4–6 in Fig. 3 of the main text are plotted using this expression.
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11. Thermal conductivity of liquid. We write the expression for thermal con-

ductivity of liquid copper as a consequence of electron-ion collisions κ
liq
si (Te, Ti, x).

We have for thermal conductivity such a form:

κ
liq
si (Te, Ti, x) ∝ Cs(Te, x)|V v λ

liq
si ∝ C(t) xβ+4/3/w(Ti).

Here we use the function C(t) introduced in section 8. We have taken into account

that the thermal capacity Cs of unit of volume, which is included in C(t), satisfies
the condition Cs|V ∝ x, and that the mean velocity v ∝ vF ∝ x2/3. Thermal
conductivity of liquid copper at the melting point on the binodal is equal to 138

W/m/K. We normalize the expression for thermal conductivity on this value. As a
result, the contribution to thermal conductivity of liquid phase, which is related to

the si interaction, has the form:

κ
liq
si (Te, Ti, x) = 138

C(t)

C(tm)

xβ(Ti)+4/3

x
β(Tm)+4/3
m

w(Tm)

w(Ti)
.

Here tm = 6kBTm/(xmεF0), xm = 7.91/9.02 is relative density of liquid copper at
the melting point. The net thermal conductivity with consideration of κse (8) is

κliq = 1/[Sse(Te, x) + 1/κ
liq
si ]. The curves 4–6 in Fig. 5 of the main text are plotted

using this formula.
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