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1. Expressions for Green’s functions
Spin-spin and spin-pseudospin retarded Green’s functions are.
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, because we consider symmetric case I = J .

Self-consistent spherically symmetric approach leads to the following expressions for Gq Rq:
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2D case. The numerators for acoustic and optical branches are
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2
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, (S5)

F1 = −8Jcg(1− γq)−Mm0, F2 = Mm0, (S6)

and the excitations spectra
ω2
ac(q) = W1 +W2, ω2

opt(q) = W1 −W2, (S7)
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here cr = 〈Ŝz
i Ŝ

z
i+r〉, r = g, d, 2g are spin-spin correlation functions, respectively for first (side of the square) cg ≡ c1, second

(diagonal) cd ≡ c2 and third (doubled side) c2g ≡ c3 nearest neighbors, c̃r = αrcr are correlation functions with vertex
corrections. The lattice sum for square case γq = 1
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Hereinbefore on-site m0 and intersite mg ≡ m1 spin-pseudospin correlation functions are

m0 = 〈Sz
i T
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i 〉, mg = 〈Sz
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and for the intersubsystem vertex corrections m̃0 = α0
STm0, m̃g = α

g
STmg we adopted the approximation α0

ST = α
g
ST = 1.

For simplicity we use the notation M = 8Km0.
Note, that the following relations for the symmetrical points Γ = (0, 0) and Q = (π, π) in the Brillouin zone are always

fulfilled
ωopt(Γ) ≥ ωac(Γ) = 0, ωac(Q) ≥ ωopt(Q) ≥ 0. (S11)

1D case.
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F1 = −4Jcg(1 − γq)−Mm0, F2 = Mm0 (S13)
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now M = 4Km0, γq is one-dimensional, other notations are the same as for 2D case.
2. Three Figures from [1]. In Figures S1, S3 almost invisible nonzero values of m0 and m1 just before the transition

(T & Tc for Fig. S1 and K & Kc for Fig. S3) show the accuracy of the self-consistent calculations.
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Fig. S1. (Color online) 2D lattice. Spin-spin and spin-pseudospin correlation functions versus the intersubsystem exchange parameter
K for different temperatures. Spin-spin nearest neighbor correlator c1 – lower solid lines, on-site spin-pseudospin correlators m0 –
upper solid, nearest neighbor spin-pseudospin correlators m1 – dotted. Different colors correspond to different temperatures. For m0

and m1 curves the temperatures are marked on the zero y-axis. For c1 lines the boundary values of T are indicated (from [1])

Fig. S2. (Color online) 2D lattice. Regions corresponding to zero and nonzero spin-pseudospin correlations. The phase boundary is well
fitted by the Tc = 0.55|K|0.55 curve (from [1]). Lines with arrows show the paths, along which the results for 2D case are presented
(Figs. 1, 2 in Supllemenraty, Figs. 1, 2 in the main text)
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Fig. S3. (Color online) 2D lattice. T -dependence of the correlation functions at several fixed K values. As in Fig. 1, spin-spin nearest
neighbor correlator c1 – lower solid lines, on-site spin-pseudospin correlators m0 – upper solid, nearest neighbor spin-pseudospin
correlators m1 – dotted. Different colors correspond to different K-values. For m0 and m1 curves K-values are marked on the zero
y-axis. For c1 lines the boundary K-values are indicated. The curves |m0|(T ) and mg(T ) are well fitted by power law m ∼ (Tc − T )α

with the exponent α ∼ 0.3 ÷ 0.5 nearly independent of K (from [1])
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