Supplemental Material to the article "Non-reciprocal propagation of solitons in a chiral medium"

Application of the technique of the inverse scattering transform to the system (7), (10), (11) in the main text follows to well known approach, see, for instance, in [1, 2]. The solutions of the spectral problem (14) in the main text have the involution

$$
\begin{equation*}
\Phi=\mathbf{M} \Phi\left(\lambda^{*}\right)^{*} \mathbf{M}^{-1} \tag{1}
\end{equation*}
$$

where

$$
\mathbf{M}=\left(\begin{array}{cc}
0 & -\varepsilon \frac{\lambda+f}{\lambda-f} \tag{2}\\
1 & 0
\end{array}\right)
$$

The respective Jost functions $\Phi_{1,2}$ corresponded to decaying as $\tau \rightarrow \pm \infty$ potential and its derivatives for ground state $F_{3}(\varsigma)=1, F(\varsigma)=0$ posses the following asymptotics:

$$
\begin{equation*}
\Phi=\exp \left(-i \lambda \sigma_{3} \varsigma\right), \quad \tau \rightarrow \pm \infty \tag{3}
\end{equation*}
$$

The symmetry properties (1) correspond to the following respective matrix forms of the Jost functions:

$$
\Phi=\left(\begin{array}{ll}
\psi_{1}^{ \pm} & -\varepsilon \psi_{2}^{ \pm *} \frac{\lambda+f}{\lambda-f} \tag{4}\\
\psi_{2}^{ \pm} & \psi_{1}^{ \pm *}
\end{array}\right)
$$

Respective functions are related by the scattering matrices \hat{S}

$$
\begin{equation*}
\Phi^{-}=\Phi^{+} \hat{S} \tag{5}
\end{equation*}
$$

where

$$
\hat{S}=\left(\begin{array}{cc}
a & b^{*} \tag{6}\\
-\varepsilon b(\lambda-f) /(\lambda+f) & a^{*}
\end{array}\right) .
$$

The Jost functions have the presentation

$$
\Phi^{+}(\theta)=\mathrm{e}^{-i \lambda \sigma_{3} \theta}+\int_{\theta}^{\infty}\left(\begin{array}{cc}
\lambda K(\varsigma, s) & \varepsilon(\lambda+f) Q_{2}^{*}(\varsigma, s) \tag{7}\\
(\lambda-f) Q_{2}(\varsigma, s) & \lambda K_{2}^{*}(\varsigma, s)
\end{array}\right) \mathrm{e}^{-i \lambda \sigma_{3} s} d s .
$$

Using these presentations of the Jost functions we derive from the spectral problem (14) in the main text and (3)

$$
\begin{align*}
& F(\varsigma)=\frac{2[1-i K(\varsigma, \varsigma)] Q^{*}(\varsigma, \varsigma)}{[1-i K(\varsigma, \varsigma)]\left[1+i K^{*}(\varsigma, \varsigma)\right]+\varepsilon|Q(\varsigma, \varsigma)|^{2}} \tag{8}\\
& F_{3}(\varsigma)=\frac{[1-i K(\varsigma, \varsigma)]\left[1+i K^{*}(\varsigma, \varsigma)\right]-\varepsilon|Q(\varsigma, \varsigma)|^{2}}{[1-i K(\varsigma, \varsigma)]\left[1+i K^{*}(\varsigma, \varsigma)\right]+\varepsilon|Q(\varsigma, \varsigma)|^{2}} \tag{9}
\end{align*}
$$

The Marchenko-type equations are:

$$
\begin{array}{r}
\varepsilon\left(f-i \partial_{y}\right) Q(\varsigma, y)+\mathcal{G}(\varsigma+y)=\int_{\varsigma}^{\infty} K^{*}(\varsigma, s) i \partial_{y} \mathcal{G}(s+y) d s \\
i \partial_{y} K(\varsigma, y)=-\int_{\varsigma}^{\infty} Q^{*}(\varsigma, s)\left(f+i \partial_{y}\right) \mathcal{G}(s+y) d s \tag{11}
\end{array}
$$

where

$$
\begin{equation*}
\mathcal{G}(y)=\int_{\mathcal{C}} \frac{b(\chi) \mathrm{e}^{i \lambda y}}{a} \frac{d \lambda}{2 \pi i}, \tag{12}
\end{equation*}
$$

\mathcal{C} is the contour of integration in the upper half-place.
The scattering data dependence vs χ for $S_{3}(\chi, \varsigma)=S_{0}, S(\chi, \varsigma)=0, \varsigma \rightarrow \pm \infty$, is determined by function

$$
\begin{equation*}
b(\chi)=b(0) \exp \left\{i S_{0}\left[\frac{(b q+4 \eta)\left(\left(b^{2}-2\right) q+4 b \eta\right)}{2(b q+4 \eta+2)}\right]\right\} \tag{13}
\end{equation*}
$$

here η is a complex number in the upper half-plane.

References

[1] S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V.E. Zakharov, Theory of Solitons: The Inverse Scattering Method, Springer-Verlag (1984).
[2] A. A. Zabolotskii, Phys. Rev. A 85, 063833 (2012).

