
Supplemental Material to the article

“Modeling the quantum Hall effect in samples with longwave weak
disorder”

This additional material includes: method for calculating potential U(x, y); dependences of DoS(E), conductance
G, and 2DEG density n at Fermi level EF ; LDoS and current J in some potential U(x, y) with a long-wave disorder.
Dependences of density n are shown in the absence of disorder (ideal case). Numbers of cited publications [4, 10, 14,
15, 19, 27, 28, 33], and Figures 1–4 relate to the main article. Figures from this additional material are referred to as
S1–S5.

Potential U(x, y) was found by numerical Thomas–Fermi method solution of a 3D electrostatic problem for a fixed
distribution of localized charges in a plane remote from 2DEG. The distribution was found by the Monte-Carlo method
under the following assumptions. It is an equilibrium distribution for a fixed number of localized charges frozen at
a certain temperature. In the equilibrium the charges are allowed to move continuously within an ideal plane. The
system of the localized charges together with their image charges in the closely placed gate is electrically neutral and
does not feel 2DEG far away. The method for calculating localized charge distribution was described in [33].

Fig. S1. Correlator of potential (a), and its cross sections along the axes ∆ry = 0, ∆rx = 0 together with the fitting curve

at Lcorr = 105 nm (b), for one of the realizations of U(x, y) on a 2× 2µm2 square

The interaction of these charges and image charges in the gate provided a correlated distribution at about 1000K
disorder freeze temperature. This value was determined by comparing computed transport and quantum scattering
times in 2DEG to experimental data. It represents an upper boundary for actual freezing temperature, because the
proposed method ignores any disorder factors except temperature. However, the calculated structural factor F (q),
characterizing the distribution of localized charges, was 3 times lower than that for perfectly random distribution, at
small wave numbers q [33].
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Statistical properties of the long-wave disorder are numerically found as correlator U(r)U(r +∆r) for arbitrary
individual implementation of U(x, y). This means averaging over r and determining the correlation length Lcorr for
approximating the correlator by (δUrms)

2 exp(−|∆r|2/L2

corr
) with L2

corr
≡ |∆r|2.

An example of the correlation function for one of the implementations U(x, y) on a square of size 2×2µm2 is
shown in Fif. S1. The anisotropy in Fig. S1 is due to the unique distribution of the localized charges in the particular
state of the sample. Increasing the size of the sample or averaging over the implementations of U(x, y) suppresses the
anisotropy.

The amplitude of the disorder was controlled by multiplying the calculated potential U(x, y) by some factor A,
whereas the potential in the connected channels was defined by constant −∆U . Then the problem of quantum electron
scattering was solved in the whole region (Fig. 1 in the main work).

Conductance G, local density of states LDoS(x, y) and computational domain-average DoS(E) ≡ LDoS(E) were
calculated by the method of nonequilibrium Green functions [27, 28] for given magnetic field and electron energy E.
The definition of the Green’s function includes a small imaginary addition of iγ to the energy, which determines the
level broadening. To calculate the fine structure in the Landau band, the value of γ must be less than the average
distance between energy levels. The main part of the calculations was performed with small value of γ < 10−5meV.
But for averaging over the spectrum it is enough to take γ = 0.01meV.

Calculated energy dependences are shown in Fig. S2a, b for the potential, which is shown in Fig. 4c in the main
work. Tall narrow spikes of DoS(E) of width Γ ∼ δUrms correspond to Landau bands (Fig. S2a). They are spaced by
wide areas of low density of states associated with edge states. Shoulder-like features of DoS develop to the left of
each Landau band at a distance of ∆U . This means that the connected channels are filled before the scattering region
becomes open for transmission. Agreement is not bad between the shown dependence of DoS(E) and the measured
DoS(E − EF ) in a high mobility 2DEG at B = 2T and even filling factors ν [19].

Fig. S2. (a), (b) – DoS(E), G(EF ) and n(EF ) dependences calculated at B = 2T, γ = 5 · 10−6 meV for potential U(x, y)

given on the square 1×1µm2 with Lcorr ≈ 80 nm, δUrms = 0.016meV and ∆U = 0.25meV (same as for Fig. 2 in the main work).

(c) – DoS(E) calculated for potential given on the square 2×2µm2 with Lcorr ≈ 105 nm (same as in Fig. S1), δUrms = 0.07meV,

∆U = 0 for B = 1T and γ = 10−3 meV; and for B = 2T, B = 3T for γ = 10−2 meV. Gaussian approximations are shown with

dotted lines
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Individual peaks merge into a total splash of width Γ ∼ δUrms, i.e. they become indistinguishable on Fig. S2a,
unlike that of Fig. 2. The calculated conductance G(EF ) and 2DEG density n(EF ) are shown in Fig. S2b, where one
can see very sharp conductance quantization steps with the width of plateaus equal to the cyclotron gap h̄ωc. The
decrease in the cyclotron gap occurs due to insufficiently small grid cell size (hx = hy = 10nm). Halving the cell size
(hx = hy = 5nm) fixes the situation, but qualitatively the results do not change.

Fig. S3. (a) – U(x, y) for long-wave disorder with Lcorr ≈ 80 nm (same as the main work), but substantially larger scattering

area and δUrms. (b) – An example of the density of nonequilibrium current for a state near the center of the quantum plateau

G = 2e2/h: EF = h̄ωc = 3.46meV. (c), (d), (e), (f) – Examples of LDoS(x, y) and J(x, y) for states far from the center of the

same plateau: G = 2e2/h at EF = 2.46meV and EF = 2.1meV

Figure S2c shows the spectrum-averaged DoS(E) dependences for the lower Landau band for the disordered poten-
tial (δUrms = 0.07meV) given on the square 2× 2µm2 and different magnetic fields B = 1, 2, and 3T. Landau bands
have become much wider than in Fig. S2a due to almost 5× increase in the strength of the disorder. The left curve
in Fig. S2c was calculated for B = 1T, γ = 10−3meV, and oscillations in the density of states are still visible. The
curves for B = 2 and 3T were calculated for γ = 10−2meV. Smooth dependencies DoS(E) with graphical precision
are matched by the Gaussians, and only distribution tails go slightly higher. Note that increasing the parameter γ
leads to averaging of DoS(E) over the spectrum. With this increase the area under the curve, which determines the
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Fig. S4. (a), (b) – DoS(E), G(EF ) and n(EF ) dependences calculated for an ideal scatterer in a 1µm wide channel. (c),

(d) – Dependences of DoS(n), G(n) and EF (n) for this case. Vertical dotted lines correspond to the edges of quantized plateaus

of conductance. (e), (f) – Dependences Jx(y) for the states indicated by respective dots in (a)–(c)

total population of the Landau level, is preserved, and the general course of the n(EF ) dependencies remains almost
unchanged. The widths of all three curves in Fig. S2c are almost equal to 2 ·δUrms. They are independent of B and the
number of Landau level, as it should be for a long-wave disorder in 2DEG [4]. Thus, the form DoS(E) for the Landau
bands at large value of broadening parameter γ in small systems turns out to be the same as in analytical calculations
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for macroscopic two-dimensional of systems [14, 15]. Calculated U(x, y), LDoS(x, y) and nonequilibrium current J(x, y)
for channel width 2µm and smooth disorder with δUrms = 0.5meV is shown in Fig. S3. It is interesting to compare it
with the main work, where the scattering area was 4 times smaller and the disorder was 30 times weaker. The case of
the normal edge state with unidirectional nonequilibrium current is shown in Fig. S3b with EF = h̄ωc = 3.46meV and
G = 2e2/h. The cases where the edge current and small current rings coexist at substantially smaller EF = 2.46meV
and EF = 2.1meV are shown by LDoS in Fig. S3c, e. These energies correspond to localized states (narrow peaks of
DoS). Note that similar patterns of small LDoS rings were observed experimentally in [10]. The calculated currents
in Fig. S3d, f flow along the lines of constant U(x, y) = EF − h̄ωc/2 and do not affect the edge current that provide
strict conductance value G = 2e2/h, even if the individual rings of LDoS happen to be in close contact with the edge
current, as shown in Fig. S3e, f. These figures and other calculations in addition to Fig. 2 of the main work show that
the effect of the penetration of strict plateaus of conductance into the tails of Landau bands is fairly common. We note
without illustration that with these parameters of the potential and for 1.6 < EF < 1.8meV the same bidirectional
current along isolines of U(x, y) is observed as in Fig. 4 of the main work.

We also calculated DoS(E), G(EF ) and n(EF ) for B = 2T in the absence of disorder U(x, y) = 0, ∆U = 0 for
channel width 1µm. This ideal case is shown in Fig. S4a, b for comparison with the case of disorder in Fig. S2a, b. The
width and height of ultra-thin DoS peaks are determined only by the imaginary additive iγ. The gaps between spikes
of DoS(E) correspond to the usual edge states in a multimode channel in a perpendicular magnetic field. The energy
dependences are similar to those with weak disorder (Fig. S2), except for the details. By analogy with Fig. 2 from
the main work, Figures S4c, d show the same values as the function of the 2DEG density. Narrow peaks of DoS(E)
turned into wide humps of DoS(n), and, accordingly, the gaps h̄ωc look narrow on n dependences. The behavior of
dependences in Fig. 2 and Fig. S4c, d are different. For example, without disorder the widths of conductance plateaus
are much narrower than transition regions between them. The situation is reversed in the case of weak disorder (Fig. 2).
However, the microscopic picture of the edge states is similar in the two cases. So, nonequilibrium current flows only
along the lower part of the channel: the longitudinal component Jx(y) = 0 for y > 100nm (Fig. S4e, f). The numbers
near the curves Jx(y) correspond to the states with integer conductance values G0 = 2e2/h that are shown by dots
with the same numbers and color on Fig. S4a–c. Figure S4e corresponds to the states at the lower edges of the first
and second conductance plateaus, i.e. low electron drift velocity. Sign change of Jx(y) at y < 100 nm means counter
currents at the lower edge of the channel. Figure S4f shows normal edge states of unidirectional nonequilibrium current
corresponding to high electron drift velocities.

Finally, Fig. S5 shows the sensitivity of the quantum Hall effect to the width of the channel (ideal case). It can
be seen that the dips in DoS caused by the edge states become narrow sharply with increasing this width from 1 to
3µm. Simultaneously, the width of strict quantum plateau in units of 1010 cm−2 decreases from 0.8 down to 0.2. The
widths of the DoS dips and the conductance plateaus are approximately the same.

Fig. S5. Dependences DoS(n) (a), G(n) and EF (n) (b) in a small range of n near the lower plateau of conductance, calculated

for clean channels of width 1, 2, and 3µm for B = 2T. Colors of the corresponding solid lines DoS(n), G(n) and dashed lines

EF (n) are the same, the numbers near these curves indicate the channel width in µm

The contribution of the area of edge states to the total area of the sample tends to zero with increase of the sample
size. The corresponding dips in DoS shrink. Thus, we can expect the contraction of the plateau of conductance to a
point, i.e. in the absence of disorder the quantum Hall effect should be destroyed in any large samples. According
to the proposed model, the situation is radically changing in the presence of weak long-wave fluctuations of U(x, y)
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in the samples. This disorder plays an important role in the experimental observation of quantum Hall effect in the
most perfect semiconductor structures (see References in the main work).
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