Supplemental Material to the article

“Two-dimensional Coulomb glass as a model for vortex pinning in
superconducting films”

1. Schwinger—Dyson identities. The Equation (2) from the main paper text is a good starting point for
the diagram technique in terms of auxiliary field ¢. It would then be useful to derive exact identities which relate
its correlation functions to the correlation functions of vortex density.

The arbitrary correlation function is defined as follows:

(O[dn, ¢]) = /D(pTrVO[(Sn,go]e_S[‘/”é”]. (1)

Due to the invariance of the integration measure w.r.t. infinitesimal transformations ¢% — ¢ + €2, we
immediately obtain:

©lon. o = | DsoTrv< Olon, o1 + 3 [806‘;" 12 0[571,@]%})63[%6"]7 @)

and due to arbitrary value of ¢, taking also into account the exact form of the action Eq. (2), we immediately
obtain the following identity:

(Pl = (ot g 22 ) - <0[5n / {Z(Mr,&wz 5n}> ®)
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By picking out various O, we can obtain various useful identities for the correlation functions. In particular,
we have:

Olon, @] = ‘Pi' = daplrrr = Z(ﬂj);}l <<Pgl @I;/> —1 <5ng<p£,> ) (4)

O[on, @] = ionl = 0= (BJ)ehi (st onb) + (ntdnl, ) (5)

thus the following identity follows:

(0ngonls) = dap(B ) — D (BT )ers (5,60, ) (B ) g (6)
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Furthermore one obtains, for the correlation function (p¢) in the form of Eq. (9):

(0ndn) = LM (7)

14+p8JQ
It is also worth noting that the local correlation function has then the form <5nﬁ5nf.> = Q — OGO, which,
strictly speaking, does not coincide with Q; the difference is however parametrically small by an extra 1/W factor.

1.1. Polarizability fluctuations. The same procedure allows one to obtain the following expression for the
four-point correlation function:

((ong, ont, ong,omd,)) = (BI)g b (B b, (B k, (BD)ek, (ot oy 0ty 08 ) ) - (8)

In the vicinity of T, the mean-field theory predicts the following form of the correlation function <<ggbg§fl>> ~
<<<pﬁ<p£<pf./ <pr,>> (for |r — 1’| > I, by definition of G matrix). Using the diagram technique, one can show that
coordinate dependence of the ¢ correlation function can be restored in the limit |r} —r)| <1 and |5 —r)| <1 as

b d ’ bb/ !’ dd/ /b/ /d/
(ot oy, ) ) = GG, Ges, G (60565 )). (9)

follows:
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Furthermore, since (ﬂj )71(§’F/x = 6px — OrGyx and the value of O contains an extra smallness ~ 1 /W, thus

rr’/

these sections of diagrams can be replaced by delta-functions:
((oneonbonsond)) ~ ({Qm0z)) (10)

Finally, the mean-square fluctuations of the polarizability corresponds to the replica component a = ¢ # b = d,
which can be symmetrized as follows:

s s \2 : 1 Yab Aa : 1 aa __ 3
(Snydne)? = }Ll_ﬂnom Zb <<Qerr’b>>7 lim mpbb =5 (11)

a

2. Derivation of the Ginzburg—Landau functional. In the main text, the following action for two matrix
fields was derived:

A Aa 1 N A
nS[G. 9] = STH(GO) + 5 Trln(1 + 5JQ) + n 3 FulGi] (12)
where F,, [Q] is a local free energy of a single—cite problem with the following Hamiltonian:
—BH,[G Zén (B2W?2 + G)onb + Buz on®. (13)

In this section we will derive the expansion of this action around the rephca symmetmc solution of saddle
point equations in the vicinity of the phase transition. Substituting the expansion G=Go+dGand O = Qy+40,
the fluctuations of the second term can be expressed as follows:

1 2oy N DM A - (FDMT B
§5Tr1n(1+ﬂJQ)—kZZQTTr(GéQ) *;Ta% Tr(6Q) (14)

(the latter identity utilizes the replicon condition ), §Qq, = 0), with the following notation:

U 2 k—1
m:/(dq)G’g()—ﬁ;kll(;—T) ksl (15)

The fluctuations of the third term read:

oo

5 1
BroF[G) = = > 5 Qarba).(anb)0arby - - 0Gasbi (16)

k=2

where the following irreducible correlation function with independent variables being pairs dng, dnp, was
introduced:

Q(albl) A(agby) = <<(6na15nb1) s (6nak6nbk)>>v ) (17)

and the average is performed w.r.t. the Hamiltonian H, [go]
The soft mode in this expansion is 6G =" udQ = QQQ‘I’ The term TrIn then reads explicitly:

k—1
1 - 1 . 1 1 .
—6Trln(1 =T, - ——  TrUF = T, [ ——Tr¥? + —Trd° — ot + ... ).
ROTrIn(l+57Q) =wo ;2 ( 6) ok(k—1) < 24 T3 e
(18)
On the other hand, the F, term generates terms with different replica structure:
R 1 R 1
SB G = —— U3, 4 2Qa00tr¥? | = 14T W3, + —tri? 1
Brd @ [G) = -7 Qgs%; av + 2Qanatr % 3602 + gt (19)

. 5 .
BndWF,[G] = — <§Q2222t1“1/4 + Q44 Z v+ Q422 Z V2 w2 4 - Q332 Z ‘Pab‘Pac‘Ifbc> =

abc abc

1 1
=T | 56t + 305 R w22, ), (20
" <896 +20162 Wit g O Vit~ g Wl a) )

abe abce



where we have denoted:

v(u)du voT v(u)du T
Q222=/—%—, Q2222=/—,%—7 21)
(2 cosh —'6(”2_”))6 30 (2 cosh —B(UQ_“))S 140 (

B v(u)du tanh? M _wT B v(u)du tanh? M _wT
Q33 — Blu—p) ~ ) 332 — B(u—p) ~ ) (22)

(2 cosh =424 30 (2 cosh =426 210

2 2 2
v(u)du ((2 sinh M) — 2) T v(u)du ((2 sinh w) — 2) T

_ ~ _ = (23
Qa4 / s Qa2 / (2 cosh 205 105 (23)

(2 cosh w) ; S e

3. One-step replica symmetry breaking. The free energy per lattice cite in the saddle point approximation
(neglecting the spatial fluctuations of matrices) contains several terms BF = S[G, Q]/N = (SL[G, Q]+ S¢[Q])/N +
BF,[G], which in the one-step replica symmetry breaking (1RSB) scheme read:

A o~ A a 1 1-— 1
SLG, QI/N =tr(GQ)/2n = = (— meOQO + Egle + GoQ2 + G191 + mG; Qs +g2Q1) ; (24)

2
Sg/N = Trin(1 + Q)/QN BUo (— (% — 1) (Qo + Qoln ﬂUoQo) +
1 1
E <Q1 +Q1ln 30, Q1> + Qanm) ; (25)
2
BF, = 3 (Go+mG1) (% - K) £o — (— - K) ;/duzm(uﬂlng(w)a (26)

where we have introduced renormalized chemical potential &t = p+T (Go + mGy) (
strength W = v/W?2 4 T2G,, and two auxiliary “distribution functions”

exp(—u?/2T°G,) [2 codlh Bur +ug — )™

exp(—u3/2W?) o
BT VIRGiT 2 ] - =)= dul”l(“l(’“Q))'
27

One can extract the leading asymptotic behavior of the integral over us making use of the small parameter
UO/W < 1:

% - K )7 renormalized disorder

1/2(’&2) = I/1(U1,U2) =

B = 3G+ mG)K(L - ) = 7 (- ) — (1 (2coshw>>2—§uﬂfv(m,gl>, (28)

where the following dimensionless function was introduced:

2
fo(m,Gy) = %/dz <lnE(z,m,gl) - mancoshg _ m891) ’ (29)
_ o B dye=v"/2%1 y+z]™
E(z,m,G1) =E(ue=p+Tz2) = Vo {2 cosh ) , (30)

with the variables z = f(us — 1), and y = Buy. The variation of the full free energy w.r.t. Q; and G; yield
equations for G; and Q; respectively — to Egs. (35), (36).

3.1. Analysis of the equations in the T" <« T, limit. The solution in the low temperature limit behaves
asm < 1,G > 1, &£ =m2G; /8 = O(1). Such scaling allows us to calculate:

=(,_ " = 2wty = [ W oY -
_(Z—E,m,gl) mzlu(xa )—/4\/7T—£GXP( 16§+ |y+$|) =
A S i 5 S
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while for auxiliary dimensionless function the following scaling holds: f,(m,G;) = 8f(£)/m?, where:

1 _ T
10 =1 [ dor (n=we - 5 - ). (32)
The saddle point equations for ¢ = Qo/1T', £ u m can be written as follows:

q f1(€)/(1—m)
¢ = imBT.In 7
2f(&) = €f'(&) = §mPBT.(1—-q)

(33)

Assuming the scaling m = u(T/T.), p = O(1), the system of equations becomes fully dimensionless, and can
be reduced to the single equation for & variable, which can then be solved numerically:

2O 6O, 1 _
T I I A, (54)

429~ ££(9)
31-q)
Due to the large value of £, these numerical solutions can be obtained analytically with good precision. The
scaling function has the following asymptotic behavior:

N7T2 1 jm ¢
KO~ -1 RS e (36)

so that ¢ ~ 1\/m/€e™¢ (which yields 1.52 - 107°), and p ~ 8f(£)/3 ~ 72/9 (which yields 1.10). Substituting
also this asymptotic to the equation for £, one can see that it does contain numerically small parameter
€= i — = = 0.11 and has the approximate form In 165 =~ €.

3 2. Dlstrlbutlon function of the local plnnlng potential. The distribution function of the vortex local

pinning potential is defined as follows:

q=f'"(&) ~143-107°,

~ 1.10. (35)

P(u) = ((0(u — (u1 +u2))q)y = /d’u,gl/g(UQ) /dulul(ul,ug)é(u — (u1 + u2)), (37)

1
E(uz)
where the averages (...); and (...), are taken w.r.t. distribution functions defined in (27).

At low temperatures, the distribution function is noticeably modified in the vicinity of the chemical potential
in the region of size o T,. We will then calculate the distribution function of the rescaled variable h = (u — ) /7.
The asymptotic behavior of the function Z(uz) was already obtained above, see Eq. (31), where z = B(ug — fi).
In this limit, the distribution function reads:

_ o e/ [ ode (0 (ph—2)?
P(h) = T 1 /mE /E(z,g) p( o ) (38)

Just like in the previous section, these expression can be further simplified analytically for £ > 1, and read
as follows:

1 4€ — p|h|
Bz, §) =~ 2 , Ph) =T, —erfc| —F—— ). 39
(0.6 exp el 246, P~ gerte (K (39)
3.3. Low temperature behavior of the entropy. The expression for the entropy can be obtained by
differentiating the full free energy w.r.t. T'. If one also takes into account the saddle point equations, one obtains
the following simple expression valid for arbitrary T

L L0k o O

2" om ~ 7' ag,

S =T ( fo(m, G1) + + ) 36T Qo. (40)

As we have shown above, in the low temperature limit auxiliary function f, satisfies scaling relation
fv(m, G1) = 8f,(&)/m?. This scaling relation nullifies the combination of first three terms in the equation above.
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However, since f, oc 32, such cancellation only guarantees the absence of the unphysical terms ~ 1/T in the
entropy. In order to extract the low-temperature behavior of the entropy, one should consider corrections to this
scaling:

=(x 2
AR(m.G) = flm.6) - S50 = 2 [ ST 2 (a1)

The quantity under the logarithm is close to unity when m < 1, which allows us to expand:

2 dx dy y? y+a)" ) T T _
Afv(mﬁl)—ﬁ/m/%/ﬂ—gﬂp (_1_65) ([QCOShW} — oty )—?mzﬂg(g(ﬁ) 1) (42)

with:
1 dx ox _ac_2 _ P(h=0)
0= 17 [ g (1) = | )

The low-temperature entropy then reads S = —387.Qq + %QVOTg(g) — —38T.Qp.







