Supplemental Material to the article

“Model for description of relaxation of quantum systems with closely
spaced energy levels”

In this Supplemental material we present the derivation of the master equation from the main text.

In the main text it has been mentioned that the Hamiltonian of two coupled harmonic oscillators with the
same frequencies has the form

Hs = (w+ Q)bTb + (w — Q)éfe, (1)

= (a1 + a2)/V2, ¢= (a1 —a2)/V2. (2)

The Hamiltonian (13) from the main text has the form Hsp =\ >k Sy ki, where k is the index of the reservoir.
This Hamiltonian describes the interaction between oscillators and their reservoirs. In the second order in small
parameter A, the change of density matrix over time At can be presented as
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where Sk(t) is an operator of the interaction between the system and kth reservoir in the interaction

representation. To calculate Sy, (t), we use Baker—Campbell-Hausdorff formula

eABe=A = A+ [A,B)/1 + A, [4, B)]/2! + ... (4)

It is obvious that [iHg,b] = —i(w 4+ Q)b, [iHs, d] = —i(w — Q)¢ St = (S)T, therefore Eq. (4) gives

Sk(t) = exp(iHst)(ay + a}) exp(—iHst) = (5)
1 /. . .

_ —i(w+Q)t _1\k—1a,—i(w—Q)t
7 (be +(=1)""ee ) +

(Z;Tei(erQ)t n (71)k716’fei(w7§2)t) '

1
+_
V2



We substitute (5) into (3) and introduce the variable 7 = 2 —t1, as a result the first term from Eq. (3) takes the
form
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The terms of Eq. (6) that contain the factor exp(+(w £ ©)7) and do not depend on ¢, can be transformed
according to
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where Gj4(w) are one-sided Fourier transformations of reservoir correlation function

G (w) = / dre=“"TRy(7), (8)
o0
Grlw) = / dre=“TTRy(r) = G1_(w) + Gry (w). )

We consider the case ) < w and w™! <« At <« Q7! Thus, the terms depending on ¢, can be separated into
two groups each of which contains either fast or slowly oscillating terms. Fast oscillating terms are proportional
to exp(+i(w £ Q)t1) or to exp(+iwty). Slowly oscillating terms are proportional to exp(£i€dt;). Fast oscillating
terms give zero after averaging over time. For instance, for the term from Eq. (3) which is proportional to I;é, we

have
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At the same time, slowly oscillating terms are transformed as follows
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The same calculations can be done for the second, the third and the forth terms of Eq. (3). As a result, the
right hand side of Eq. (6) becomes proportional to the At. Finally, after replacing A/At with 9/0t, we obtain
Eq. (16) from the main text.

It should be mentioned that one can move back to the Schrédinger picture via the formula
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It can be seen that in the Schrodinger picture the relaxation superoperators do not depend on time. The term
(15) can be included in the Hamiltonian part of Eq. (14). This will slightly change the eigenfrequencies of the
system initially described by the Hamiltonian Hs. Further, we neglect this change of eigenfrequencies.
Now, we derive the equations for the average occupation operators of the system eigenmodes. The dynamics
of operator & which does not depend on time explicitly obeys the equation d(a)/dt = Tr (ﬁsd). We define the

function A

— (@Y X) = (Via, X]) + ([Y,a) X (17)
Using Equations (17) and (14) one can derive the following relations for (bb)
A(E,IST,ETE) = (b1 [bTD, B]) + ([T, bTBIB) = —2(bTh),
A(BT,B, BTB) = (b[bth, bT]) + ([b, bTBIBT) = 2(1 + (bTD)),
A(é, éT,ETB) =0, A(é e, ETE) —0,
A(é,@u}n}) = (M btD, B]) + ([, bTB]B) = —(&Th),
A(éT,B, BTB) = (b[bth, &1]) + ([b, bTBlety = (&Th)
A(ET,é, 8*13) = (2[6"b,51)) + ([, BBy = (bte),
A(é, ET,ETB) = (b1 [bTh, &) + ([bF, bTBle) = —(bTe),
Tr (16, pslb'h) = ~(¢'h),
Tr ([61¢, pslbth) = (b7e). (18)

Analogous relations are valid for (¢7é¢). Combining similar terms we arrive at the equations for average values
of occupation operators of symmetric and antisymmetric modes:
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Here

A=—(m(w+Q) +y(w+02))/4, (21)
A= —(n(w—Q) +7w-2)/4 (22)
B+C=-(m-4w—Q) —n1(w-92))/2 (23)
B+C=-(n—t(w+9Q) =7 1(w+Q)/2 (24)
B—C=—74-(w+Q) =724 (w+9))/2, (25)
B=C=—(ni—(w—9) =74 (w—Q)/2, (26)
and 7;(w) = (G;(-w) — Gj(W)), Vj—+(w) = (G- (w) = Gj1(—w)), Vj+-(w) = =(Gj4 (W) — Gj—(—w)).

Since (TR(7))* = TR(-7), one-sided Fourier transformations obey the condition (G_(w))* = Gy(w).
Therefore, G(w) € R, and Re(G+(w)) = G(w)/2. Asaresult, A, A € R, B = (B)*,C = —(C)*, B4+C = (B — O)*,
B+C=(B-C)".

Further, we have

A(B,BT,BT(}) = (b{bte, b)) + ([bF, bTelb) = — (bTe),

A(ET,B, éTé) = (blbte, b)) + ([b, bTelbty = (bTé)

A(é, éT,BTé) = (e'bte, &) + (&, bTele) = — (bTe),

A(é*,é, BTé) = (elbte, ef]) + ([¢, bTaety = (bTe),

A(é,@tiﬂa) = (ctbte, b)) + ([¢, bTelb) = —(bTh) — (ete),

A(éT,E, éTé) = (blbte, et]) + (b, bTaety = 2 + (6Th) + (ete),

A(BT,é, iﬂé) - A(é, bt ch) —Tr ([BTC, ps]bTé) -0,

Tr ([éT b, ﬁS]ETé) = —(c'e) + (bTD) (27)

Combining similar terms, we arrive at
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For completeness, we derive equations for the average values of the operators BTB, éte, Z;Té, ¢th in the global and
local approaches. In the global approach, in Eq. (16) from main text we should replace all terms containing e*??*
with zeros. Then B, B, C,C as well as constant terms in Egs. (28) and(29) become zero. Finally, the equations
for the averages of occupation operators and for the correlations in the global approach take the form
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a<g;e> = i20(bT¢) + N> (A + A)(bTe). (32)
6<§15> = —i2Q(¢Tb) + X*(A + A)(e'D). (33)

The main difference of these equations from the ones obtained in the partial-secular approach, (see Egs. (19),
(20), (28) and (29)) is that these equations are independent from each other.
In the local approach, the following master equation is considered

% = —i[Hs, ps]+
+ (Gi(~w)Llay, al] + Gy (w)Lla], a1]+
+ G2(~w)Llas, a}] + Ga(w)Llal, a]) A2 /2. (34)

This master equation reflects the assumption that relaxation operators of coupled oscillators do not differ
from the relaxation operators of uncoupled oscillators. This is equivalent to the zeroth order perturbation theory

in small parameter Q/w. From Equation (34), one can obtain the following equations for average of the operators
bih, ete, bte, ¢h

% ag& = Ky +2P(b'b) + M(bTe) + M(cTh), (35)
ete . .
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where Kt = (G1(w) £ G2(w))/2, P = —(11(w) + 12(w))/4, and M = —(y1(w) — 12(w))/4.



