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Nonlinear absorption in the ENZ regime. The nonlinear index is a complex quantity, n2 = n2r + in2i,

whose real part defines the nonlinear phase shift, and the imaginary part is associated with nonlinear absorp-

tion. According to the work by Caspani et al. [28], n2r, experience enhancement when the probe wavelength

approaches the ENZ wavelength λENZ. In contrast to n2r, the dependence n2i(λ) demonstrates more complex

behavior in ENZ materials. The magnitude of n2i changes the sign at λENZ, which indicates the transition from

positive to negative (saturable) nonlinear absorption [28]. Thus, at the ENZ wavelength, an enhanced nonlinear

phase shift can be achieved with zero nonlinear losses. This is a unique feature of ENZ materials. However, as we

have shown in the main text of the article, n2r is generally enhanced at a wavelength λ′, which is shifted from

λENZ. We attributed this anomalous shift to the spectral dispersion of both the linear permittivity and the cubic

susceptibility χ(3). Below we discuss the properties of n2i, in the ENZ regime, especially at the wavelength λ′.

For the case of a non-degenerate nonlinear interaction between an intense pump beam and a weak probe

beam, n2i is defined by [28]
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where ε0 is the vacuum permittivity, c is the speed of light, npump
r

is the real part of the linear refractive index at

the pump wavelength, χ
(3)
r and χ

(3)
i

are the real and imaginary parts of the third-order nonlinear susceptibility

at the probe wavelength, nr and ni are the real and imaginary parts of the linear refractive index at the probe

wavelength.

Fig. S1. (Color online) The real part of the linear permittivity as a function of wavelength for (a) – AZO and (b) – TiN.

Experimental data on the permittivity of AZO and TiN are taken from [29]. Red curves show the trend of n2i vs probe

wavelength, which is calculated using Eq. (S1) and assuming nondispersive χ(3) with equal real and imaginary parts. The

vertical dashed lines indicate the ENZ wavelength (λENZ) and the maximum of n2r (λ′)

In work [28], the simple case χ
(3)
r = χ

(3)
i

= const was considered, that is, the spectral dispersion of χ(3) was

neglected. Under this assumption, the frequency dependence of n2i is determined by the term (nr − ni)/|n|2.
The magnitude of n2i is equal to zero when nr = ni. In turn, this condition is fulfilled when εr = 0. Thus, when

χ
(3)
r = χ

(3)
i

= const, the value of n2i is equal to zero at λENZ. In order to illustrate this, we plotted εr and n2i as

a function of the probe wavelength for two ENZ materials: AZO (Fig. S1a) and TiN (Fig. S1b). Importantly, the

wavelength corresponding to n2i = 0 is not affected by the spectral dispersion of the linear permittivity.

Thus, the enhancement of n2r is achieved at λ′, whereas nonlinear absorption vanishes at λENZ. Interestingly,

λ′ does not match with λENZ. As a result, the enhanced nonlinear phase modulation in the ENZ media can be
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accompanied by either nonlinear losses (n2i(λ
′) > 0) or saturable (n2i(λ

′) < 0) absorption. This can be appreci-

ated from Fig. S1, where the wavelength λ′ indicates the maximum of n2r. As seen, for both AZO and TiN λ′ is

blue-shifted from λENZ towards the spectral range, where nonlinear losses take place (n2i ∼ (nr − ni)/|n|2 < 0).

Fig. S2. (Color online) The trend of n2i vs probe wavelength calculated using measured values of χ(3) and n for (a) –

AZO and (b) – TiN. The vertical dashed lines indicate the ENZ wavelength (λENZ) and the maximum of n2r (λ′). The

wavelength λ′′ is not shown since it is highly shifted from λENZ

For the case of dispersive χ(3), i.e. when λENZ falls into the resonance of χ(3), the wavelength dependence of

n2i is determined by the term
(

χ
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/|n|2. Upon solving the equation n2i = 0 we derive an expression

for the wavelength λ′′ at which nonlinear losses are zero:
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The value of εr at λ′′ is generally nonzero, therefore λ′′ 6= λENZ. Thus, the enhancement of n2r occurs at

λ′, whereas nonlinear losses vanish at λ′′, and λ′ 6= λ′′ 6= λENZ. Figure S2 shows the wavelength dependence of

n2i plotted using measured values of χ(3) and n for AZO (Fig. S2a) and TiN (Fig. S2b). Experimental data were

taken from [26, 33]. The dispersion of χ(3) significantly modifies the nonlinear optical response of an ENZ material.

From Figure S2a we see that λ′ lies in the region of negative n2i. As a result, the ENZ-enhanced nonlinear phase

modulation in AZO is accompanied by saturable absorption. In the case of TiN, n2i is positive at λ′, indicating

the presence of nonlinear losses. The sign of n2i is defined by the magnitudes of both, linear refractive index and

nonlinear susceptibility of a particular material (see Eq. (S1)). It is important to note that ε (λ) and χ(3)(λ) of

many ENZ materials depend on a variety of parameters, such as doping level, stoichiometry, crystallinity, etс.

Therefore it is important to determine λ′, λ′′ and n2 for each ENZ material of choice. We also note that n2r and

n2i are independent. The ENZ enhancement of nonlinear phase shift is not affected by the nonlinear absorption

occurring within the material.

The applicability limits of the condition εr = 0. According to Eq. (4), εopt
r

at λENZ is equal to zero only

in the following cases: (1) εi(λENZ) = 0 and/or (2) D(λENZ) = ±1. We consider D = 1 only because D = −1

leads to negative nopt
r

. D(λENZ) = 1 when dnr/dω = −dni/dω at λENZ (see Eq. (3)). Below we show, that the

latter is fulfilled when dεi/dω ≪ dεr/dω at λENZ. The real and imaginary parts of the linear refractive index are

given as
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Upon inserting Eq. (S1) and Eq. (S2) into condition dnr/dω = −dni/dω one can obtain the following relation
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At the ENZ wavelength we have: εr = 0 and |ε| = εi. In this case, the right-hand side of Eq. (S5) is equal

to zero. Thus, D(λENZ) = 1 when dεi/dω ≪ dεr/dω at λENZ. It is important to note, that here we assumed

χ
(3)
r = χ

(3)
i

= const.
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