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To obtain a meson Lagrangian from the four-quark interactions of Nambu–Jona-Lasinio (NJL) type, one

should isolate the divergent part of the one-loop quark diagrams, which dominate the low-energy regime of the

effective theory. The proper-time Fock–Schwinger method is known to be an efficient tool for this purpose. How-

ever, the direct use of this method is problematic if the quark masses are not equal. Till recently, the isolation

of the singular part of one-loop quark diagrams in the NJL model was carried out due to one or another ansatz

superimposed on the form of regularized integrals. Such a procedure is ambiguous, since it is always possible

to propose another ansatz that differs by adding to the considered integral an arbitrary finite contribution that

vanishes in the limit of equal quark masses. To define such a procedure unambiguously, a mathematically rigorous

method is required. The Volterra series combined with the Fock–Schwinger proper-time method allows to solve

the problem.

A Volterra representation generalizes the standard large mass expansion of the heat kernel to the case of

unequal masses by the formula

e−t(M2+A) = e−tM2

[

1 +

∞
∑

n=1

(−1)nfn(t, A)

]

, (1)

where M = diag(Mu,Md,Ms) is a diagonal mass matrix; t is the Fock–Schwinger proper-time parameter; the

expression in the square brackets is the time-ordered exponential OE[−A](t) of A(s) = esM
2

Ae−sM2

, and A is a

positive definite self-adjoint elliptic operator in some background. The coefficients of the series (1) are

fn(t, A) =

t
∫

0

ds1

s1
∫

0

ds2 . . .

sn−1
∫

0

dsnA(s1)A(s2) . . . A(sn). (2)

In the case of equal masses Mu = Md = Ms, this formula yields the well-known large mass expansion with

standard Seeley–DeWitt coefficients an(x, y). If the masses are not equal, formula (1) can be thought of as a

natural extension of the Schwinger’s method used to isolate the divergent aspects of a calculation in integrals

with respect to the proper-time to the non-commutative algebra. Unlike the commutative case, the products (2)

are spread over a certain time interval, and the reason is the unequal quark masses.

To exclude quark degrees of freedom in the Lagrangian density

LQQ = Q̄(iγµdµ −M + σ)Q = Q̄DQ, (3)

one should integrate over quark variables in the corresponding functional integral. The result is a functional

determinant

WE = ln | detDE | = −
∞
∫

0

dt

2t
ρt,Λ Tr

(

e−tD
†
E
D

E

)

, (4)

representing a real part of the one-loop effective action in Euclidian space as the integral over the proper-time t.

The functional trace in (4) can be evaluated by the Schwinger technique of a fictitious Hilbert space. The use

of a plane wave with Euclidian 4-momenta k, 〈x|k〉, as a basis greatly simplifies the calculations (details are given

in [8]) and leads to the representation of the functional trace by the integrals over coordinates and momenta

WE =−
∫

d4x

∫

d4k

(2π)4
e−k2

∞
∫

0

dt

2t3
ρt,Λ trI

[

e−t(M2+A)
]

, (5)
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where we use the proper-time regularization ρt,Λ with two subtractions at scale Λ

ρt,Λ = 1− (1 + tΛ2)e−tΛ2

. (6)

It totally agrees with the regularization of the standard NJL model [14]. A self-adjoint operator in Hilbert space

A is

A = −d2 − 2ikd/
√
t+ Y, (7)

where a summation over four-vector indices is implicit. The covariant derivative

dα = ∂α + iΓα, (8)

Γα = Vα − ξ(+)
α + γ5(Aα − ξ(−)

α ), (9)

where Γα is a connection in a curved factor space of Goldstone fields, and

Y = σ2 − {σ,M}+ i[γα(σ −M), dα]

+
1

4
[γα, γβ][dα, dβ ]. (10)

Inserting Eq. (1) into (5) with the following integrations over four-momenta kα and the proper-time t one

finds the one-quark-loop (1QL) contribution to the effective meson Lagrangian in the form of asymptotic series

L1QL = − Nc

32π2

∞
∑

n=1

tr bn(x, x), (11)

where coefficients bn(x, x) depend on the external fields and quark masses. They contain a full information about

both the effective meson vertices and corresponding coupling constants. The first two coefficients are [8]

tr b1 = trDf

[

−J0 ◦ Y − 1

4
(∆J0 ◦ Γµ)Γ

µ

]

, (12)

tr b2 =
1

2
trDf

[

Y (J ◦ Y )− 1

6
Γµν(J ◦ Γµν)

]

+ trD ∆b2. (13)

The traces are taken over Dirac (D) gamma matrices and flavor (f) indices. Other notations correspond to [8].

Let us explain what is the difference between formulas (12) and (13) from the expressions of the standard

NJL model. There are several. The standard NJL Lagrangian contains only divergent parts of one-loop quark

diagrams. In our formulas, they correspond to the first term in (12) and the first two terms in (13). If the masses

of the quarks were equal, these terms would completely coincide with the Lagrangian of the standard NJL model

(in the same limiting case). In other words, both Lagrangians are equivalent in the chiral limit. In the case of

unequal quark masses, the theories differ substantially. This concerns both the terms already considered and the

set of additional vertices contained in the second term in (12) and the third term in (13). The peculiarity of the

latter is that they are finite and vanish in the chiral limit. These terms break both isotopic and SU(3)f symmetry.

However, it is not yet clear their physical role. Our longstanding goal is to elucidate the physical content of this

new theory.

Thus, the effective meson Lagrangian is given by

Leff = L1QL +
1

4GV

tr (V 2
µ +A2

µ)

− 1

4GS

tr
[

σ2 − {σ,M}+ (σ −M)Σ
]

. (14)

This Lagrangian contains all the information about chiral symmetry breaking, including effects induced by un-

equal quark masses. In what follows we will be interested only in the part of this Lagrangian that is responsible

for the physics of pseudoscalar mesons.
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First of all, it is necessary to exclude from this Lagrangian the contribution of terms linear in the scalar field.

It is contained in L1QL and the last term in (14). Noticing that

trDf (−J0 ◦ Y ) → 8
∑

i=u,d,s

J0(Mi)Miσi, (15)

we arrive at the self-consistency equation relating the masses of light quarks mi to the masses of heavy constituent

quarks Mi

Mi

(

1− NcGS

2π2
J0(Mi)

)

= mi. (16)

To pass to physical fields, it is necessary to eliminate the mixing of pseudoscalar fields with axial-vector ones

(PA-mixing), and also to separate the kinetic part of the free Lagrangian of pseudoscalars in L1QL.

The first goal is achieved by redefining the axial vector field Aµ = A′
µ−κA◦ξ(−)

µ . In this case the corresponding

contributions from L1QL and the second term in (14) can be canceled. To demonstrate this, collect the necessary

terms of the effective Lagrangian

L(b1)
1QL → Nc

32π2

{

(∆J0)ud

[

(1− κAud)∂µπ
+ + 2a

′+
1µ

]

×
[

(1− κAud)∂µπ
− + 2a

′
−

1µ

]

+ (∆J0)us

[

(1− κAus)∂µK
+ + 2K

′+
1Aµ

]

×
[

(1− κAus)∂µK
− + 2K

′
−

1Aµ

]

+ (∆J0)ds

[

(1− κAds)∂µK
0 + 2K

′0
1Aµ

]

×
[

(1− κAds)∂µK̄
0 + 2K̄

′0
1Aµ

]}

, (17)

where the symbol (b1) indicates the origin of the contribution in question. Recall that one-loop factors (∆J0)ij
are finite and vanish in the limit of equal quark masses. There are no such contributions in the standard version

of the NJL model.

The next contribution owes its origin to the coefficient b2, namely its part described by the first term of

Eq. (13)

L(b2)
1QL → Nc

16π2

{

(Mu +Md)
2J1(Mu,Md)

×
[

(1 − κAud)∂µπ
+ + 2a

′+
1µ

] [

(1− κAud)∂µπ
− + 2a

′
−

1µ

]

+ (Mu +Ms)
2J1(Mu,Ms)

[

(1 − κAus)∂µK
+ + 2K

′+
1Aµ

]

×
[

(1 − κAus)∂µK
− + 2K

′
−

1Aµ

]

+ (Md +Ms)
2J1(Md,Ms)

[

(1− κAds)∂µK
0 + 2K

′0
1Aµ

]

×
[

(1 − κAds)∂µK̄
0 + 2K̄

′0
1Aµ

]}

. (18)

Here, the regularized logarithmically divergent integral J1(Mi,Mj) coincides up to a common factor with the

corresponding one-loop integral I2(Mi,Mj) used in the standard approach (see Eq. (13) in [14]). We emphasize

that the regularization used by us was deliberately chosen in such a way as to be totally consistent with the

standard approach.

It remains to take into account the last contribution related to the PA-mixing, which arises from the second

term in (14). This contribution is

− 1

2GV

(

κAuda
′
−

1µ∂µπ
+ + κAusK

′
−

1Aµ∂µK
+

+ κAdsK̄
′0
1Aµ∂µK

0
)

+ h.c. (19)
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Collecting the results (17), (18) and (19), we find

κ−1
Aij = 1 +

8π2

NcGV [2(Mi +Mj)2J1ij +∆J0ij ]
. (20)

What is new here is the appearance of the term ∆J0ij , which is absent in the standard picture. It is the contribu-

tions of such finite terms (as it has been shown in [8] there are over a hundred of them in the effective Lagrangian

(14)), which vanish in the limit of equal quark masses, that could not be taken into account in the standard

approach. The method considered here makes it possible to do this systematically. As a result, an interesting

opportunity arises to study their role in the complex process of dynamic and explicit chiral symmetry breaking.

Of course, any effective theory (for example, 1/Nc chiral perturbation theory [3]) takes into account these effects,

but at the cost of a large number of arbitrary constants. In a theory with four-quark interactions, the inclusion of

such terms does not require the introducing of new parameters, thereby allowing one to calculate the constants

of the effective chiral Lagrangian.

Our next task is to obtain the kinetic part of the free Lagrangian of pseudoscalar fields. To do this, we need

the already known expressions (17), (18) and, in addition, one should write out the corresponding contribution

of the second term in (14), that was omitted in (19)

1

4GV

(

κ2
Aud∂µπ

+∂µπ
− + κ2

Aus∂µK
+∂µK

−

+ κ2
Ads∂µK̄

0∂µK
0
)

. (21)

Collecting all these contributions, one finds, for instance in the case of charged pions, that kinetic term is

given by

Lπ+π−

kin = ∂µπ
+∂µπ

−

{

κ2
Aud

4GV

+
Nc

32π2
(1 − κAud)

2

× [2(Mu +Md)
2J1(Mu,Md) + ∆J0ud]

}

=

(

κAud

4GV

)

∂µπ
+∂µπ

−. (22)

To give this expression a standard form, one should introduce the physical pion fields πph

π =

√

4GV

κAud

πph =
1

fπ
πph. (23)

The dimensional parameter fπ is nothing else than the weak decay constant of a charged pion. Similar calculations

in the case of kaons give the values of the constants

fK+ =

√

κAus

4GV

, fK0 =

√

κAds

4GV

. (24)

The resulting expressions require a more detailed discussion. First, they differ from the standard result of the NJL

model, where the constant fπ is estimated through the Goldberger–Treiman relation on the quark level. The latter

is a result of current algebra. It can be easily shown that in the chiral limit the formula (23) coincides with the

result of the standard approach. Second, the behavior of the constants beyond chiral limit is essentially different.

The absence of a clear procedure for taking into account the effects of explicit chiral symmetry breaking in the

standard approach makes it impossible, for instance, to obtain the experimental value of the ratio fK/fπ = 1.19.

On the contrary, the method proposed in our work, as we saw in the main text of the article, easily copes with

this task and leads to a phenomenologically consistent value fK/fπ = 1.21. This agreement is achieved due to

the additional contribution from (∆J0)us term.

Let’s establish now the mass formulas of π±, K±, K0 and K̄0 mesons. To do this, we need the corresponding

contribution arising from the last term of the Lagrangian (14)
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1

4GS

trf MΣ → − 1

4GS

[

(Mu +Md)(mu +md)π
+π−

+ (Mu +Ms)(mu +ms)K
+K−

+ (Md +Ms)(md +ms)K̄
0K0

]

. (25)

Note that integration over quark fields, i.e., the Lagrangian L1QL, does not contribute to the pseudoscalar masses.

Now, after redefinitions of fields, we finally arrive to the result

Lmass = −GV

GS

[

1

κAud

(Mu +Md)(mu +md)π
+
ph
π−

ph

+
1

κAus

(Mu +Ms)(mu +ms)K
+
ph
K−

ph

+
1

κAds

(Md +Ms)(md +ms)K̄
0
ph
K0

ph

]

. (26)

Expanding these expressions in powers of light quarks, one can not only obtain the known result of the current

algebra: µ̄2
π± = B0(mu+md), µ̄

2
K± = B0(mu+ms) and µ̄2

K0 = B0(md+ms), but also move further by calculating

the corrections to the current algebra mass formulae, as it was demonstrated in the main text of the article.
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