
Supplementary Material to the artile

�Anomalous radiative heating of a metal partile moving in lose

proximity to a metal plate�

A. General relativisti formula for the rate of partile heating. In the problem of relativisti

�utuation-eletromagneti interation of a small dipole partile moving with a onstant veloity V parallel

to the surfae of a thik plate with frequeny-dependent dieletri permittivity ε and magneti permittivity µ,

one should disriminate the quantities relating to di�erent inertial referene frames: the partile frame of rest,

and that of the plate (laboratory system). The former one is o-moving with veloity V in the x-diretion of the

Cartesian oordinate system, assoiated with the plate. Then the rate of partile heating dQ′/dt′ in its frame of

rest (i.e. loal rate of heating) is given by [13℄
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where α′′

e,m(ω) are the imaginary parts of the partile eletrial and magneti polarizabilities, γ = (1 −

V 2/c2)−1/2 = (1 − β2)−1/2
is the Lorentz fator, ω+ = ω + kxV , k = (kx, ky), q0 = (k2 − ω2/c2)1/2,

q = (k2 − εµω2/c2)1/2, Re(ω,k) = A1∆e(ω) +A2∆m(ω), Rm(ω,k) = A1∆m(ω) +A2∆e(ω),
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In the limit V/c ≪ 1 (γ = 1), taking the retardation into aount, the quantity dQ′/dt′ oinides with the rate

of partile heating dQ/dt in the referene frame of the plate. In this ase, formula (S1) redues to (1).

B. Struture of formula (1). In the ase V = 0, formula (1) oinides with the well-known results [3, 6�8℄.

For V 6= 0, its key feature is the presene of the frequeny fator ω+
in the integrand. It is the fator ω+

that

mathematially leads to the possibility of anomalous heating of the partile. To illustrate the appearane of ω+
in

(5), we onsider a simpler ase of a nonretarded nonrelativisti interation of a small partile with a �utuating

eletri dipole moment. In this ase, the initial expression for the partile heating rate dQ/dt is given by [13℄

dQ/dt = dQ(1)/dt+ dQ(2)/dt = 〈ḋsp

E
ind〉+ 〈ḋind

E
sp〉, (S2)

where indies �sp� and �ind� denote spontaneous and indued omponents of the �utuating dipole moment of

the partile and the eletri �eld of the surfae, the dots over d denote time derivatives, and the angular brakets

denote omplete quantum statistial averaging. When alulating the �rst term in (S2), the solution to the Pois-

son equation ∆φ = 4π divP for the eletri potential φ has to be fond, where P = δ(x − V t)δ(y)δ(z − z0)d
sp(t)

is the polarization reated by �utuating dipole moment d
sp(t) of a partile. The φ is expressed by the integral

Fourier-transform
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where r = (x, y), k = (kx, ky). The d
sp(t) is expressed by

d
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The Poisson equation is solved under the standard boundary onditions φ(r,+0, t) = φ(r,−0, t), ∂z(r, z, t)z=+0 =

ε∂z(r, z, t)z=−0, where ε is the dieletri permittivity of the plate. For the Fourier-omponent of the indued

potential reated by the moving partile, it follows [13℄
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where ∆(ω) = (ε(ω) − 1)/(ε(ω) + 1). Using (S5) and the relationship E
ind = −∇φind

, the indued eletri �eld

at the partile loation point (V t, 0, z0) is given by

E
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Having substituted (S4) and (S6) into the �rst term of (S2) and taking the orrelator of the partile dipole

moments into aount
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where i, k = x, y, z and α′′(ω) is the imaginary part of the partile polarizability, we obtain
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where ω+ = ω + kxV . When obtaining (S8), the analytial properties of the funtions α(ω) and ∆(ω) are used

(evenness of their real parts and oddness of imaginary parts). When alulating the term dQ(2)/dt in (S2), the

linear integral relation between E
sp

and d
ind

is used, yielding
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The orrelator of eletri �elds of the plate arising in this ase is worked out using the �utuation-dissipation

relation [13℄
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Substituting (S9) and (S10) into the seond term of (S2) yields
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Summing up (S9) and (S11), yields
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Formula (S11) oinides with (1) when passing in the latter to the non-retarded limit (c → ∞, q0 → k). In the

relativisti solution to this problem, it follows ∆(ω) → (εq0− q)/(εq0+ q). Similarly, if the heating of the partile

due to the magneti interation is taken into aount, one obtains dQ/dt = 〈ṁsp

B
ind+ 〈ṁind

B
sp〉, where msp,ind

è B
sp,ind

are the spontaneous and indued omponents of the �utuation magneti moment of the partile and

the magneti �eld of the plate.The orresponding alulations lead to formula (S11) with the eletri polariz-

ability replaed by the magneti one and ∆(ω) → (µ − 1)/(µ+ 1). Upon relativisti onsideration, respetively,

∆(ω) → (µq0 − q)/(µq0 + q).

Thus, the appearane of a �shifted� frequeny ω+
in the formulas for the heating rate dQ/dt of a partile

is mathematially due to the presene of derivatives of the dipole moment in (S2), whih must be taken before

substituting the instantaneous oordinates of the partile (V t, 0, z0), with subsequent appliation of analytial

properties of polarizability α(ω) and the Fresnel re�etion oe�ients ∆(ω) of plate.
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