Supplemental material to the article "Lattice Gas Dynamics"

Here, we derive the master equation for dynamic correlation function. Consider three time moments: initial ($t_{1}=0$), intermediate ($t_{2}=t$), and final $\left(t_{3}=\Delta t+1\right)$. The statistical weight of corresponding random process (eq. 11 of main text) is:

$$
\begin{array}{r}
\Omega\left\{n_{1} \rightarrow n_{2} \rightarrow n_{3}\right\}=\exp \left(\frac{H\left\{n_{1}(r)\right\}-H\left\{n_{3}(r)\right\}}{T}\right) . \\
\cdot \int \prod_{r} d b_{3}(r) d b_{2}(r) d w_{3}(r) d w_{2}(r) . \\
\cdot\left(1+s_{2 b}^{-} b_{2}\right)\left(1+s_{3 b}^{-} b_{3}\right) \cdot\left(1+s_{2 w}^{-} w_{2}\right)\left(1+s_{3 w}^{-} w_{3}\right) . \\
\cdot\left(1+\left[s_{2 b}^{+}+\left(n_{1}-s_{2 b}^{+}\right) b_{2}\right] \sum_{r^{\prime}} D_{b}\left(r, r^{\prime}, t\right) b_{2}^{*}\left(r^{\prime}\right)\right) . \\
\left(1+\left[s_{3 b}^{+}+\left(n_{2}-s_{3 b}^{+}\right) b_{3}\right] \sum_{d} D_{b} b_{3}^{*}(r+d)\right) . \\
\cdot\left(1+\left[s_{2 w}^{+}+\left(1-n_{1}-s_{2 w}^{+}\right) w_{2}\right] \sum_{r^{\prime}} D_{w}\left(r, r^{\prime}, t\right) w_{2}^{*}\left(r^{\prime}\right)\right) . \\
\cdot\left(1+\left[s_{3 w}^{+}+\left(1-n_{2}-s_{3 w}^{+}\right) w_{3}\right] \sum_{d} D_{w} w_{3}^{*}(r+d)\right) . \\
\cdot \exp \left\{-\frac{1}{2}\left(b_{2} b_{2}^{*}+b_{3} b_{3}^{*}+w_{2} w_{2}^{*}+w_{3} w_{3}^{*}\right)\right\} . \tag{1}
\end{array}
$$

For arbitrary second time moment $t \neq 1$, one has to treat all spatial lattice sites as nearest neighbors, and use $D_{b, w}\left(r, r^{\prime}, t\right)$ instead of diffusion coefficients $D_{w, b}$ (lines 5 and 7 in (1)). To get dynamic correlation function at final moment $t+1$, let us average (1) over configurations $\left\{n_{1}, n_{2}, n_{3}\right\}$

$$
\begin{gather*}
D_{b, w}\left(r, r^{\prime}, t+1\right)=\frac{1}{A} \sum_{\left\{n_{1}, n_{2}, n_{3}\right\}}^{\sim} \Omega\left\{n_{1} \rightarrow n_{2} \rightarrow n_{3}\right\}, \\
A=\sum_{\left\{n_{1}, n_{2}, n_{3}\right\}} \Omega\left\{n_{1} \rightarrow n_{2} \rightarrow n_{3}\right\} . \tag{2}
\end{gather*}
$$

The " \sim " means that the sum covers only those realizations of the process,
which include transition of one and the same black (for $D_{b}\left(r, r^{\prime}, t+1\right)$) or white (for $D_{w}\left(r, r^{\prime}, t+1\right)$) particle from r at $t_{1}=0$ to r^{\prime} at $t_{3}=t+1$. To fulfill this condition, we use known trick which allows to select single polymer line in polymer statistics. Let us introduce into (1) three additional scalar fields. The first of them $-y$ - is complex delta - correlated spatial field. We insert $y(r)$ into every ending of diffusion step of black particle during time $t_{1} \rightarrow t_{2}$, and its conjugated value $y^{*}(r)$ - into every beginning of those during $t_{2} \rightarrow t_{3}$. The other two fields ψ_{1} and ψ_{2} serve as indicators (without integration over them). We put $\psi_{1}(r)$ into every beginning of black particle diffusion step during $t_{1} \rightarrow t_{2}$, and $\psi_{2}(r)$ - into every ending of those during $t_{2} \rightarrow t_{3}$. As a result, one gets the functional of fields ψ_{1}, ψ_{2}

$$
\begin{align*}
& \Omega_{b}\left\{\psi_{1}, \psi_{2}\right\}=\sum_{\left\{n_{1}, n_{2}, n_{3}\right\}} \exp \left(\frac{H\left\{n_{1}(r)\right\}-H\left\{n_{3}(r)\right\}}{T}\right) . \\
& \cdot\left(\prod_{r} d b_{3}(r) d b_{2}(r) d w_{3}(r) d w_{2} .\right. \\
& \cdot\left(1+\left[s_{2 b}^{-} y b_{2}\right)\left(1+\left(n_{3 b}^{-} b_{3}\right)\left(1+s_{2 b}^{+}\right) b_{2}\right] \psi_{2 w}^{-} w_{r^{\prime}} D_{b}\left(r, r^{\prime}, t\right) b_{2}^{*}\left(r^{\prime}\right) y\left(r^{\prime}\right)\right) . \\
& \cdot\left(1+\left[s_{3 w}^{-} w_{3}+\left(n_{2}-s_{3 b}^{+}\right) b_{3}\right] y^{*} \sum_{d} D_{b} b_{3}^{*}(r+d) \psi_{2}(r+d)\right) . \\
& \cdot\left(1+\left[s_{2 w}^{+}+\left(1-n_{1}-s_{2 w}^{+}\right) w_{2}\right] \sum_{r^{\prime}} D_{w}\left(r, r^{\prime}, t\right) w_{2}^{*}\left(r^{\prime}\right)\right) . \\
& \cdot\left(1+\left[s_{3 w}^{+}+\left(1-n_{2}-s_{3 w}^{+}\right) w_{3}\right] \sum_{d} D_{w} w_{3}^{*}(r+d)\right) . \\
& \cdot \exp \left\{-\frac{1}{2}\left(b_{2} b_{2}^{*}+b_{3} b_{3}^{*}+w_{2} w_{2}^{*}+w_{3} w_{3}^{*}+y y^{*}\right)\right\}
\end{align*}
$$

which is the generating functional for (2):

$$
\begin{equation*}
D_{b}\left(r, r^{\prime}, t+1\right)=\left.\frac{1}{A} \cdot \frac{\partial^{2} \Omega_{b}\left\{\psi_{1}, \psi_{2}\right\}}{\partial \psi_{1}(r) \partial \psi_{2}\left(r^{\prime}\right)}\right|_{\psi_{1}=\psi_{2}=1} \tag{4}
\end{equation*}
$$

The $D_{w}\left(r, r^{\prime}, t\right)$ may be calculated by similar way. The (4), after calculation of functional integrals in (1,3), is the master equation on dynamic correlation function $D_{b, w}\left(r, r^{\prime}, t\right)$. The approach may be considered as a lattice gas analogue of the mode coupling theory.

For quasi - binary system, there are no auxiliary field w, i.e. one put $w_{2}=w_{3}=0$, and omits integration over these fields. The lower index w is insufficient in this case, so we denote $\Omega_{b}=\Omega, D_{b}=D$.
(3) contains filling numbers n_{2} as local term, so that sum over these variables may be easily done. To do so over $\left\{n_{1}\right\},\left\{n_{3}\right\}$, one uses Hubbard Stratonovich transform to auxiliary fields $x_{1}(r), x_{3}(r)$. As a result one gets functional integral over $x_{1}, x_{3}, b_{3}, b_{2}, y$, with "Lagrangian", containing "free field" quadratic part

$$
\begin{align*}
& -\frac{T}{2} \sum_{r, r^{\prime}} x_{1}(r) J^{-1}\left(r, r^{\prime}\right) x_{1}\left(r^{\prime}\right)- \\
& -\frac{T}{2} \sum_{r, r^{\prime}} x_{3}(r) J^{-1}\left(r, r^{\prime}\right) x_{3}\left(r^{\prime}\right)- \\
& -\frac{1}{2} \sum_{r}\left(b_{2} b_{2}^{*}+b_{3} b_{3}^{*}+y y^{*}\right), \tag{5}
\end{align*}
$$

and logarithmic interaction term $\sum_{r} \ln \Theta(r)$, where

$$
\begin{array}{r}
\Theta=1+\left(1-b_{2}\right)(1+F)+ \\
+e^{\alpha}[1+(1+F)(1+G)]+ \\
+e^{\beta}\left[1+b_{3}+\left(1-b_{2}\right)\left(1+b_{3} F\right)\right]+ \\
+e^{\alpha+\beta}\left[1+b_{3}+\left(1-b_{2}\right)\left(1+b_{3} F\right)+\right. \\
\left.+\left(1+b_{3}\right) G+b_{2}\left(1+b_{3} F\right)(1+G)\right], \\
F(r)=y^{*}(r) \sum_{r^{\prime}} D\left(r, r^{\prime}\right) b_{3}^{*}\left(r^{\prime}\right) \psi_{2}\left(r^{\prime}\right), \\
G(r)=\psi_{1}(r) \sum_{r^{\prime}} D\left(r, r^{\prime}, t\right) b_{2}^{*}\left(r^{\prime}\right) y\left(r^{\prime}\right) . \tag{6}
\end{array}
$$

Expanding the last up to the first order of b_{3}, b_{2}, y, and calculating resulting Gauss integrals, one gets

$$
\begin{gathered}
\Omega\left\{\psi_{1}, \psi_{2}\right\}=\int D x_{1} D x_{3} \exp \left[\Gamma\left\{x_{1}, x_{3}, \psi_{1}, \psi_{2}\right\}\right], \\
\Gamma\left\{x_{1}, x_{3}, \psi_{1}, \psi_{2}\right\}=-\frac{T}{2} \sum_{r, r^{\prime}} x_{1}(r) J^{-1}\left(r, r^{\prime}\right) x_{1}\left(r^{\prime}\right)- \\
-\frac{T}{2} \sum_{r, r^{\prime}} x_{3}(r) J^{-1}\left(r, r^{\prime}\right) x_{3}\left(r^{\prime}\right)+\ln \left(1+e^{\alpha}\right)+
\end{gathered}
$$

$$
\begin{align*}
& +\ln \left(1+e^{\beta}\right)+\frac{1}{128} \sum_{r, r^{\prime}, r^{\prime \prime}}\left(\frac{e^{\alpha}}{1+e^{\alpha}} \psi_{1}\right)_{r^{\prime}} D\left(r^{\prime}, r, t\right) \\
& \cdot\left(\frac{e^{\alpha}}{\left(1+e^{\alpha}\right)^{2}\left(1+e^{\beta}\right)}\right)_{r} D\left(r, r^{\prime \prime}\right)\left(\frac{e^{\beta}}{1+e^{\beta}} \psi_{2}\right)_{r^{\prime \prime}} \tag{7}
\end{align*}
$$

where $\alpha=i x_{1}+\mu_{1}, \quad \beta=x_{3}+\mu_{3}$. Chemical potentials $\mu_{1}(r)$ and μ_{3} allow one to specify initial and final sets of configurations, respectively. For integration over x_{3}, we use the mean field approximation, i.e. maximization of Γ with respect to x_{3} :

$$
\begin{equation*}
\frac{\delta \Gamma\left\{x_{1}, x_{3}, \psi_{1}, \psi_{2}\right\}}{\delta x_{3}(r)}=0 \tag{8}
\end{equation*}
$$

Then, one has to average solution of (8) over $x_{1}(r)$. Instead, we average (8) before its solution:

$$
\begin{array}{r}
T \sum_{r^{\prime}} J^{-1}\left(r-r^{\prime}\right) x_{3}\left(r^{\prime}\right)=\left(\frac{e^{\beta}}{1+e^{\beta}}\right)_{r}- \\
-\frac{1}{128} K(r)\left(\frac{e^{\beta}}{\left(1+e^{\beta}\right)^{2}}\right) \sum_{r} D\left(r, r^{\prime}\right)\left(\frac{e^{\beta}}{1+e^{\beta}}\right)_{r^{\prime}}+ \\
+\frac{1}{128}\left(\frac{e^{\beta}}{\left(1+e^{\beta}\right)^{2}}\right) \sum_{r} D\left(r, r^{\prime}\right) K\left(r^{\prime}\right)\left(\frac{1}{1+e^{\beta}}\right)_{r^{\prime}} \tag{9}
\end{array}
$$

where

$$
\begin{equation*}
K(r)=\sum_{r^{\prime}} D\left(r, r^{\prime}, t\right)\left\langle\left(\frac{e^{\alpha}}{1+e^{\alpha}}\right)_{r}\left(\frac{e^{\alpha}}{\left(1+e^{\alpha}\right)^{2}}\right)_{r^{\prime}}\right\rangle \tag{10}
\end{equation*}
$$

and angular brackets denote gaussian average

$$
\begin{equation*}
\langle. .\rangle=\int . . D x_{1} \exp \left(-\frac{T}{2} \sum_{r, r^{\prime}} x_{1}(r) J^{-1}\left(r, r^{\prime}\right) x_{1}\left(r^{\prime}\right)\right) \tag{11}
\end{equation*}
$$

Equation (4) takes the form:

$$
\begin{gather*}
D\left(r, r^{\prime}, t+1\right)=N \sum_{r^{\prime \prime}}\left\langle\left(\frac{e^{\alpha}}{1+e^{\alpha}}\right)_{r}\left(\frac{e^{\alpha}}{\left(1+e^{\alpha}\right)^{2}}\right)_{r^{\prime \prime}}\right\rangle . \\
\cdot D\left(r, r^{\prime \prime}, t\right) D\left(r^{\prime \prime}, r^{\prime}\right)\left(\frac{1}{1+e^{\beta}}\right)_{r^{\prime \prime}}\left(\frac{e^{\beta}}{1+e^{\beta}}\right)_{r^{\prime}} \tag{12}
\end{gather*}
$$

Normalizing multiplier N has to be chosen as to provide

$$
\begin{equation*}
\sum_{r^{\prime}} D\left(r, r^{\prime}, t\right)=1 \tag{13}
\end{equation*}
$$

In (12) we denoted $D\left(r, r^{\prime}\right)=D\left(r, r^{\prime}, t=1\right)$. In (13), summation extends over all points, including $r^{\prime}=r$. Eqs. $(9-13)$ provide the necessary master equation. Let us list approximations used:

1. linear expanding of interaction term;
2. mean - field integration over x_{3};
3. average of (8) before its solution.
