Home
For authors
Submission status

Current
Archive
Archive (English)
   Volumes 21-40
   Volumes 1-20
   Volumes 41-62
      Volume 62
      Volume 61
      Volume 60
      Volume 59
      Volume 58
      Volume 57
      Volume 56
      Volume 55
      Volume 54
      Volume 53
      Volume 52
      Volume 51
      Volume 50
      Volume 49
      Volume 48
      Volume 47
      Volume 46
      Volume 45
      Volume 44
      Volume 43
      Volume 42
      Volume 41
Search
VOLUME 46 (1987) | ISSUE 2 | PAGE 65
State density of fractal structures with a long-range interaction
The example of a triangular Serpinskii carpet with an r ~~13 interaction between nodes is used to show that for values of β above a critical value Pc the state density is determined by a universal exponent (the spectral dimensionality), as in the case of a short-range interaction. Athowever, the exponent depends on β. This exponent is found through an e expansion around β.