Home
For authors
Submission status

Current
Archive
Archive (English)
   Volumes 41-62
   Volumes 1-20
   Volumes 21-40
      Volume 40
      Volume 39
      Volume 38
      Volume 37
      Volume 36
      Volume 35
      Volume 34
      Volume 33
      Volume 32
      Volume 31
      Volume 30
      Volume 29
      Volume 28
      Volume 27
      Volume 26
      Volume 25
      Volume 24
      Volume 23
      Volume 22
      Volume 21
Search
VOLUME 33 (1981) | ISSUE 3 | PAGE 181
Algebraization of the perturbation theory in quantum chromodynamics
It is shown that if an unperturbed problem is a multidimensional harmonic oscillator or a hydrogen-like system and the perturbation is a polynomial, then the formulation of perturbation theory must be a purely algebraic problem. A hydrogen-like system in an electric field W parallel to the magnetic field ^^is analyzed. The correction to the ground-state energy of order $2 ßÐÊö2 is calculated. Some structures of the arbitrary "correction to the wave function" are determined in the explicit form.