Home
For authors
Submission status

Current
Archive
Archive (English)
   Volumes 41-62
   Volumes 21-40
   Volumes 1-20
      Volume 20
      Volume 19
      Volume 18
      Volume 17
      Volume 16
      Volume 15
      Volume 14
      Volume 13
      Volume 12
      Volume 11
      Volume 10
      Volume 9
      Volume 8
      Volume 7
      Volume 6
      Volume 5
      Volume 4
      Volume 3
      Volume 2
      Volume 1
Search
VOLUME 20 (1974) | ISSUE 11 | PAGE 730
Isothermal domains in quasi-one-dimensional superconductors
It is shown that the usual generalization of the Ginzburg-Landau equations to conclude the nonstationary case leads directly to the possible existence of domain boundaries of the superconducting and normal phases in a homogeneous quasi-one-dimensional superconductor. The current that must flow through the conductor for such a boundary to be in equilibrium is somewhat smaller than the critical pair-breaking current. Thus, equilibrium between the current-induced domains in the superconductor can exist also without the thermal effect discussed by Volkov and Kogan.