Home
For authors
Submission status

Current
Archive (English)
Archive
   Volumes 61-80
   Volumes 41-60
   Volumes 21-40
   Volumes 1-20
   Volumes 81-92
      Volume 92
      Volume 91
      Volume 90
      Volume 89
      Volume 88
      Volume 87
      Volume 86
      Volume 85
      Volume 84
      Volume 83
      Volume 82
      Volume 81
Search
VOLUME 88 (2008) | ISSUE 10 | PAGE 752
Manifestation of Hamiltonian chaos in dissipative atomic transport in a standing-wave laser field
Abstract
We simulate atomic ballistic transport in a standing-wave laser field in the framework of a Monte Carlo stochastic wavefunction approach in which the coherent Hamiltonian evolution is interrupted at random times by spontaneous emission events. It is shown in numerical experiments and confirmed analytically that the character of spatial and momentum diffusion of spontaneously emitting atoms changes abruptly in the atom-laser detuning regime where the deterministic Hamiltonian dynamics has been shown to be chaotic. Thus, we find a manifestation of underlying Hamiltonian chaos in the diffusive-like center-of-mass motion which can be observed in real experiments.