Home
For authors
Submission status

Archive
Archive (English)
Current
   Volumes 113-119
   Volumes 93-112
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
Search
VOLUME 94 (2011) | ISSUE 5 | PAGE 422
Correlation induced switching of local spatial charge distribution in two-level system
Abstract
It was found that tunneling current through a nanometer scale structure with strongly coupled localized states causes spatial redistribution of localized charges induced by Coulomb correlations. We present here theoretical investigation of this effect by means of Heisenberg equations for localized states electron filling numbers. This method allows to take into account pair correlations of local electron density exactly. It is shown that inverse occupation of the two-level system caused by Coulomb correlations appears in particular range of applied bias. Described effects can give a possibility of charge manipulation in the proposed system. We also expect that described results can be observed in tunneling structures with impurities or with small quantum dots.