Home
For authors
Submission status

Archive
Archive (English)
Current
   Volumes 113-120
   Volumes 93-112
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
Search
VOLUME 97 (2013) | ISSUE 4 | PAGE 195
The first-order deviation of superpolynomial in an arbitrary representation from the special polynomial
Abstract
Like all other knot polynomials, the superpolynomials should be defined in arbitrary representation R of the gauge group in (refined) Chern-Simons theory. However, not a single example is yet known of a superpolynomial beyond symmetric or antisymmetric representations. Following the article Equations on knot polynomials and 3d/5d duality, we consider the expansion of the superpolynomial around the special polynomial in powers of q-1 and t-1 and suggest a simple formula for the first-order deviation, which is presumably valid for arbitrary representation. This formula can serve as a crucial lacking test of various formulas for non-trivial superpolynomials, which will appear in the literature in the near future.