Home
For authors
Submission status

Archive
Archive (English)
Current
   Volumes 113-121
   Volumes 93-112
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
Search
VOLUME 104 (2016) | ISSUE 12 | PAGE 849
Controlled spin pattern formation in multistable cavity-polariton systems
Abstract
Theoretical studies are performed of planar cavity-polariton systems under resonant optical excitation. We show that if the cavity is spatially anisotropic, the polariton spin is highly sensitive to the pump polarization direction, which can be used to modulate the circular polarization of the output light. In particular, when the right- and left-circular components of the incident wave have equal intensities and mutually opposite angular momenta, the pump has strictly linear yet angle-dependent polarization and as such brings about a periodic angular variation of the polariton spin. Free motion of polaritons is the other factor determining the shape of the cavity-field distribution. Such externally driven and highly tunable spin patterns represent a counterpart of spin shaping in nonresonantly excited Bose-Einstein condensates of cavity polaritons.