Home
For authors
Submission status

Archive
Archive (English)
Current
   Volumes 113-119
   Volumes 93-112
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
Search
VOLUME 105 (2017) | ISSUE 8 | PAGE 489
Unconventional pairing in three-dimensional topological insulators with warped surface state
Abstract
We study the effect of the Fermi surface anisotropy (hexagonal warping) on the superconducting pair potential, induced in a three-dimensional topological insulator (TI) by proximity with an s-wave superconductor (S) in presence of a magnetic moment of a nearby ferromagnetic insulator (FI). In the previous studies similar problem was treated with a simplified Hamiltonian, describing an isotropic Dirac cone dispersion. This approximation is only valid near the Dirac point. However, in topological insulators the chemical potential often lies well above this point, where the Dirac cone is strongly anisotropic and its constant energy contour has a snowflake shape. Taking this shape into account we show that a very exotic pair potential is induced in the topological insulator surface. Based on the symmetry arguments we also discuss the possibility of a supercurrent flowing along the S/FI boundary, when a S/FI hybrid structure is formed on the TI surface.