Home
For authors
Submission status

Current
Archive (English)
Archive
   Volumes 81-92
   Volumes 41-60
   Volumes 21-40
   Volumes 1-20
   Volumes 61-80
      Volume 80
      Volume 79
      Volume 78
      Volume 77
      Volume 76
      Volume 75
      Volume 74
      Volume 73
      Volume 72
      Volume 71
      Volume 70
      Volume 69
      Volume 68
      Volume 67
      Volume 66
      Volume 65
      Volume 64
      Volume 63
      Volume 62
      Volume 61
Search
VOLUME 79 (2004) | ISSUE 5 | PAGE 262
Self-compression and catastrophic collapse of photon bullets in vacuum
Abstract
Photon-photon scattering, due to photons interacting with virtual electron-positron pairs, is an intriguing deviation from classical electromagnetism predicted by quantum electrodynamics (QED). Apart from being of fundamental interest in itself, collisions between photons are believed to be of importance in the vicinity of magnetars, in the present generation intense lasers, and in intense laser-plasma/matter interactions; the latter recreating astrophysical conditions in the laboratory. We show that an intense photon pulse propagating through a radiation gas can self-focus, and under certain circumstances collapse. This is due to the response of the radiation background, creating a potential well in which the pulse gets trapped, giving rise to photonic solitary structures. When the radiation gas intensity has reached its peak values, the gas releases part of its energy into `photon wedges', similar to Cherenkov radiation. The results should be of importance for the present generation of intense lasers and for the understanding of localized gamma ray bursts in astrophysical environments. They could furthermore test the predictions of QED, and give means to create ultra-intense photonic pulses.