Home
For authors
Submission status

Current
Archive (English)
Archive
   Volumes 81-92
   Volumes 41-60
   Volumes 21-40
   Volumes 1-20
   Volumes 61-80
      Volume 80
      Volume 79
      Volume 78
      Volume 77
      Volume 76
      Volume 75
      Volume 74
      Volume 73
      Volume 72
      Volume 71
      Volume 70
      Volume 69
      Volume 68
      Volume 67
      Volume 66
      Volume 65
      Volume 64
      Volume 63
      Volume 62
      Volume 61
Search
VOLUME 74 (2001) | ISSUE 2 | PAGE 92
Two-terminal conductance of a fractional quantum Hall edge
Abstract
We have found solution to a model of tunneling between a multi-channel Fermi liqiud reservoir and an edge of the principal fractional quantum Hall liquid (FQHL) in the strong coupling limit. The solution explains how the chiral edge propagation makes the universal two-terminal conductance of the FQHL fractionally quantized and different from that of a 1D Tomonaga-Luttinger liquid wire, where a similar model but preserving the time reversal symmetry predicts unsuppressed free-electron conductance.