Home
For authors
Submission status

Current
Archive (English)
Archive
   Volumes 81-92
   Volumes 41-60
   Volumes 21-40
   Volumes 1-20
   Volumes 61-80
      Volume 80
      Volume 79
      Volume 78
      Volume 77
      Volume 76
      Volume 75
      Volume 74
      Volume 73
      Volume 72
      Volume 71
      Volume 70
      Volume 69
      Volume 68
      Volume 67
      Volume 66
      Volume 65
      Volume 64
      Volume 63
      Volume 62
      Volume 61
Search
VOLUME 72 | ISSUE 8 | PAGE 605
Spectra of Random Contractions and Scattering Theory for Discrete-Time Systems
PACS: 03.65.Nk, 05.45.Mt
Random contractions (sub-unitary random matrices) appear naturally when considering quantized chaotic maps within a general theory of open linear stationary systems with discrete time. We analyze statistical properties of complex eigenvalues of generic Ν χ N random matrices A of such a type, corresponding to systems with broken time-reversal invariance. Deviations from unitarity are characterized by rank Af < N and a set of eigenvalues 0 < T* < 1, i — 1,..., Μ of the matrix Τ = 1 A*A. We solve the problem completely by deriving the joint probability density of N complex eigenvalues and calculating all η-point correlation functions. In the limit Ν » M,n the correlation functions acquire the universal form found earlier for weakly non-Hermitian random matrices.