Home
For authors
Submission status

Current
Archive (English)
Archive
   Volumes 81-92
   Volumes 41-60
   Volumes 21-40
   Volumes 1-20
   Volumes 61-80
      Volume 80
      Volume 79
      Volume 78
      Volume 77
      Volume 76
      Volume 75
      Volume 74
      Volume 73
      Volume 72
      Volume 71
      Volume 70
      Volume 69
      Volume 68
      Volume 67
      Volume 66
      Volume 65
      Volume 64
      Volume 63
      Volume 62
      Volume 61
Search
VOLUME 72 (2000) | ISSUE 10 | PAGE 746
Invariant spin coherent states and the theory of quantum antiferromagnet in a paramagnetic phase
A consistent theory of the Heisenberg quantum antiferromagnet in the disordered phase with short range antiferromagnetic order was developed on the basis of the path integral for the spin coherent states. We have presented the Lagrangian of the theory in a form which is explicitly invariant under rotations and have found natural variables in the term of which one can construct a perturbation theory. The short wave spin fluctuations are similar to the spin wave theory ones, and the long wave spin fluctuations are governed by the nonlinear sigma model. We have also demonstrated that the short wave spin fluctuations have to be considered accurately in the framework of the discrete version in time of the path integral. In the framework of our approach we have obtained the response function for the spin fluctuations for the whole region of the frequency ω and the wave vector k and have calculated the free energy of the system.