Home
For authors
Submission status

Current
Archive (English)
Archive
   Volumes 81-92
   Volumes 41-60
   Volumes 21-40
   Volumes 1-20
   Volumes 61-80
      Volume 80
      Volume 79
      Volume 78
      Volume 77
      Volume 76
      Volume 75
      Volume 74
      Volume 73
      Volume 72
      Volume 71
      Volume 70
      Volume 69
      Volume 68
      Volume 67
      Volume 66
      Volume 65
      Volume 64
      Volume 63
      Volume 62
      Volume 61
Search
VOLUME 68 (1998) | ISSUE 7 | PAGE 588
Lagrangian instanton for the Kraichnan model
We consider high-order correlation functions of the passive scalar in the Kraichnan model. Using the instanton formalism we find the scaling exponents ζη of the structure functions Sn for η ^> 1 under the additional condition άζι ^> 1 (where d is the dimensionality of space). At η < nc (where nc^/[2(2 £2)]) the exponents are ζη (C2/4)(2n n2/nc)y while at η > nc they are η-independent: ζη = Сг«е/4« We also estimate η-dependent factors